


Topological Charge of 
Optical Vortices

This book is devoted to the consideration of unusual laser beams – vortex or singular 
beams. It contains many numerical examples, which clearly show how the phase of 
optical vortices changes during propagation in free space, and that the topological 
charge is preserved.

Topological Charge of Optical Vortices shows that the topological charge of an 
optical vortex is equal to the number of screw dislocations or the number of phase 
singularities in the beam cross-section. A single approach is used for the entire book: 
based on M. Berry’s formula. It is shown that phase singularities during beam propa-
gation can be displaced to infinity at a speed greater than the speed of light. The 
uniqueness of the book is that the calculation of the topological charge for scalar light 
fields is extended to vector fields and is used to calculate the Poincare–Hopf singular-
ity index for vector fields with inhomogeneous linear polarization with V-points and 
for the singularity index of vector fields with inhomogeneous elliptical polarization 
with C-points and C- lines.

The book is written for opticians, and graduate students interested in an interest-
ing section of optics – singular optics. It will also be of interest to scientists and 
researchers who are interested in modern optics. In order to understand the content 
of the book, it is enough to know paraxial optics (Fourier optics) and be able to cal-
culate integrals.
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Preface
The book is devoted to the consideration of unusual laser beams – vortex or singular 
beams. They are called vortex beams because their energy flow rotates in a spiral 
around the optical axis when the beam propagates along this axis. And they are 
called singular beams because in the cross-section of such beams there are isolated 
points with zero intensity, in which the phase is not defined. These points are sin-
gular (unusual points). Vortex laser beams are described by two integral (averaged) 
characteristics: orbital angular momentum (OAM) and topological charge (TC). The 
OAM of the beam shows with what moment of force the light will act on a micropar-
ticle placed at the focus of the vortex laser beam. And the TC of the beam shows 
how many complete jumps by 2π the phase will acquire in the cross-section of the 
beam when it is traversed along a closed contour that encompasses the entire beam. 
If the OAM of the beam is preserved during the propagation of a scalar paraxial laser 
beam, then the TС is also preserved if we take into account the phase singularities 
located at the periphery in the beam cross-section (at infinity). The OAM normalized 
to the beam power can be either an integer or a fractional number. And the TC of the 
beam (except for the initial plane and at infinity) is always an integer. In the book, 
the TC of the axial superposition of Laguerre–Gauss (LG) vortex beams is calcu-
lated. It turned out to be equal to the maximal TC of the beams in the superposition. 
Therefore, if the amplitude of the light field is expanded according to the basis of the 
LG beams in an infinite series, then the TC of such a light field is infinite. The book 
contains examples of vortex beams with infinite TC. Note that the OAM of the beam 
is determined by the amplitude and phase, and TC is determined only by the phase 
of the beam. Therefore, there are light beams in which the TC is zero, and the OAM 
is nonzero (for example, elliptical Gaussian beams). And vice versa, there are beams 
in which the OAM is equal to zero, and the TC is nonzero. The book shows that the 
phase singularities of optical vortices can “go” to infinity (and “come” from infinity) 
with a speed greater than the speed of light in a vacuum. Examples of light beams 
with a half-integer TC are also given, but the fractional part of the TC is at infinity 
(“hidden” phase). The book shows that the TC of the superposition of two parallel 
LG beams depends on which beam is on the left and which is on the right. And if 
we rearrange the LG beams in places (left to right, and right to left), then the TC of 
such a superposition will change to 1. The book will be of interest to everyone who 
is interested in optics.

A sufficient number of monographs are devoted to the study of the OAM of vor-
tex beams, and there are no monographs on the study of TC. This book is precisely 
devoted to the study of the topological charge of vortex laser beams.
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Introduction
Laser optical vortices are light fields that have singularity points in the phase distri-
bution, i.e. points where the phase is undetermined. Optical vortices also have screw 
dislocations in their wavefront. In the intensity distribution of optical vortices, there 
are isolated points of zero intensity. Topological charge (TC) is one of the main 
characteristics of optical vortices. This is an integer number equal to the number of 
phase jumps by 2π along an infinite-radius circle in the beam cross-section. The TC 
is positive if the phase increases counterclockwise, and TC is negative otherwise. 
This definition of the topological charge was given by M.V. Berry and it shows that 
the cross-section of an optical vortex can contain both a finite and an infinite number 
of singularity points (local optical vortices), that can reside in the periphery of the 
laser beam in areas with almost zero intensity. Such peripheral points of phase sin-
gularity cannot be detected experimentally, but they contribute to the TC and cannot 
be neglected. Optical vortices can have only an integer TC or an indefinite TC. An 
optical vortex can have a fractional TC only in the initial plane, since, in this plane, 
arbitrary TC can be given. However, on propagation in free space, the initial frac-
tional TC generates an infinite number of local optical vortices with opposite TCs, 
which are located at different distances from the optical axis of the beam. Therefore, 
the TC of such a beam is indefinite, since there are different numbers of phase jumps 
by 2π on transverse circles with different radii. The TC is conserved on propagation 
in free space, similarly to the orbital angular momentum of vortex beams. There are 
works where the authors demonstrated that the TC of the combined beams and of the 
beams with an initial fractional TC is not conserved on propagation. However, these 
works did not take into account local optical vortices located in the beam periph-
ery, since these vortices cannot be detected experimentally or in simulation within 
the paraxial limits. Such peripheral optical vortices can be detected by nonparaxial 
simulation by using the Rayleigh–Sommerfeld integrals.

In this book, topological charges are obtained for a superposition (coaxial and 
noncoaxial) of the Laguerre–Gaussian and Bessel–Gaussian beams, for asymmetric 
beams, and the Hermite–Gaussian vortex beams. The TC evolution is shown for 
two combined Laguerre–Gaussian beams with different waists radii. It is shown 
how the TC is generated in optical vortices with an initial fractional topological 
charge. It is demonstrated that the TC is conserved on propagation in space, as well 
as after passing through an arbitrary amplitude mask, and is resistant to random 
phase distortions.
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1

1 Topological Charge 
of Superposition
Conservation of 
Topological Charge

1.1  TOPOLOGICAL CHARGE AND ASYMPTOTIC PHASE 
INVARIANTS OF VORTEX LASER BEAMS

There are several well-known non-diffracting and propagation-invariant light fields. 
The most prominent examples in 3D space are the Bessel beams [1], parabolic beams 
[2], Mathieu beams [3], as well as Laguerre–Gaussian and Hermite–Gaussian par-
axial modes [4]. In 2D space, there are also the Airy and Weber beams [5,6]. A 
thorough review of propagation-invariant fields can be found in [7,8]. Besides propa-
gating in free space, the interaction of such beams with matter is also studied, includ-
ing non-linear processes [9]. Potential applications of such beams are, for example, 
wireless communications and optical interconnections. In addition to the beams that 
preserve their shape on propagation, there are several properties of the beam cross-
section which are also propagation-invariant. These properties can be used as indi-
cators that can help the receiver to identify the incoming signal beam. For instance, 
well-known indicators are the orbital angular momentum (OAM) and the topological 
charge (TC) of vortex beams. Many works were dedicated to the conservation of 
these properties, either on propagation in atmospheric turbulence [10] or after ampli-
tude distortions [11]. Many of these works were about determining the OAM [12,13] 
or TC [14,15] of an optical signal beam.

These two indicators are often used interchangeably since for conventional rota-
tionally symmetric optical vortices both OAM and TC give the same value. However, 
the nature of these indicators is quite different physically. While OAM is an inte-
gral property of a light field transverse intensity and phase distributions which are 
calculated by integration over the whole transverse plane [16,17,18], TC is a purely 
phase property which is calculated by integration of phase angular derivative over an 
infinite-radius circle [19] or closed curve. Thus, TC can be treated as an asymptotic 
phase property. Propagation invariance of the OAM can be easily proven mathemati-
cally since the propagation operator (Fresnel transform) is unitary. Conservation of 
both the OAM and of the spin angular momentum on free-space propagation was 
proven in [20] (Section 4 “Eigenoperator description of laser beams”). The invari-
ance of the TC cannot be proven in this way. This can be proven intuitively since it 
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2  Topological Charge of Optical Vortices

is known that phase singularities can disappear only as the result of the annihilation 
of two singularities of opposite topological charge [21]. Thus, on propagation, TC 
should not change its value. However, there is a well-known work by M.S. Soskin et 
al., where a superposition of Gaussian and Laguerre–Gaussian beams with different-
waist radii can change the TC [22]. This seems to contradict the idea of TC conserva-
tion. Recently, we revisited this problem, studying the TC change on the propagation 
of two different-waist LG beams [23] and showed that, when nearing the TC-change 
plane, certain vortices move away from the optical axis to infinity. Thus, the sum-
mary TC of all the vortices, including those in infinity, remains. Therefore, two ques-
tions arise: can the TC conservation be proven mathematically, and are there some 
other propagation-invariant asymptotic phase invariants of light fields?

In this section, to prove that TC is conserved upon propagation, we introduce a 
huge-ring approximation, which is similar to the paraxial approximation, but, on 
the contrary, the distance from the optical axis is much larger than the propagation 
distance. Using this approximation, we prove that TC value does not change from 
one transverse plane to another. In addition, we show that another asymptotic phase 
propagation-invariants can be constructed similarly to the TC.

1.1.1  Orbital angular MOMentuM and tOpOlOgical charge

If a light field propagates along the optical axis z and has the complex amplitude 
E(r, φ , z), where (r, φ , z) are the cylindrical coordinates, then its normalized OAM 
(OAM Jz divided by beam power W) in a transverse plane reads as [16,17,18]:
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with Im being the imaginary part of a complex number, while TC μ is defined as the 
integral over an infinite-radius circle [19]:
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1.1.2  prOpagatiOn Of a light field in free Space and 
cOnServatiOn Of itS Orbital angular MOMentuM

The complex amplitude of a monochromatic light field in homogeneous medium 
obeys the Helmholtz equation, which in the cylindrical coordinates reads as:
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where k = 2π /λ is the module of wavevector for light with the wavelength of λ . For 
paraxial propagation, the Helmholtz equation reduces to:

 2
1 1

0
2

2 2

2

2ik
E

z

E

r r

E

r r

E�
�

� �
�

� �
�

� �
�

�
�

. (1.4)

It is well-known that if E is a solution of Equation (1.4) then the complex amplitude 
E(r, φ , z) in a transverse plane is related to that in the initial plane (z = 0) by the 
Fresnel transform [24]:
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It can be shown the dot product of two functions is equal to the dot product of their 
Fresnel transforms. In addition, if E is a solution of Equation (1.4) then it is obvious 
that the functions E* and ∂ E/∂ φ are also solutions of Equation (1.4). Therefore, both 
numerator and denominator in Equation (1.1) are conserved on propagation and thus 
the normalized OAM is conserved too. The detained proof of the OAM conservation 
can be found in [20] (Section 4 “Eigenoperator description of laser beams”).

As to nonparaxial free-space propagation, the OAM should be analyzed as a vec-
torial quantity. Its z-component reads as [25]:
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with (x, y) being the Cartesian coordinates in a transverse plane and (α , β ) being the 
Cartesian coordinates in the Fourier plane (cosines of the angles defining the direc-
tions of plane waves), A(α , β ) being the angular spectrum of plane waves.

1.1.3  cOnServatiOn Of the tOpOlOgical charge

Unfortunately, the conservation of TC (Equation (1.2)) cannot be proven so easily. 
According to the TC definition in Equation (1.2), the field should be analyzed in its 
periphery, at an infinite distance r from the optical axis. Thus, a paraxial approxi-
mation is inappropriate here. Therefore, we introduce another approximation here, 
quite opposite to the paraxial. Generally, without the paraxial limits, if a light field 



4  Topological Charge of Optical Vortices

propagates along the z-axis, its complex amplitudes in two transverse planes (source 
plane and observation plane) are related by the Rayleigh–Sommerfeld integral [26]:
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where L is the distance between a point in the source plane (ρ , θ , 0) and a point in 
the observation plane (r, φ , z):

 L z r r� � � � �� ��� ��
2 2 2 1 2

2� � � �cos . (1.9)

The complex amplitude given by Equation (1.8) is an exact solution of the Helmholtz 
equation and describes a light field without paraxial approximation. The Fresnel 
transform in Equation (1.5) can be obtained from Equation (1.8) for a case when 
the propagation distance is large compared to the transverse coordinates (paraxial 
propagation) (Figure 1.1(a)) and therefore:
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r r
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To calculate the topological charge, we now suppose that, on the contrary, r is much 
greater than z and ρ (Figure 1.1(b)). Thus, the distance L is given by:

 L r
z

r
� � � � �� �

2 2

2
� � � �cos . (1.11)

FIGURE 1.1 (a) Paraxial approximation: propagation distance z is much larger than trans-
verse coordinates ρ and r in the input and output planes respectively, (b) huge-ring approxima-
tion: transverse coordinate r in the output plane is much larger than the propagation distance 
z and the transverse coordinate ρ in the input plane.
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We call here this expression a huge-ring approximation. Using it, we obtain the 
 complex amplitude on a very large radius ring in a transverse plane. The Rayleigh–
Sommerfeld integral can be rewritten as:
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Similarly to the derivation of the Fresnel transform, we use Equation (1.11) for the 
exponent in the integrand, while the expression (ik/L2

 – 1/L3) we write approximately 
as ik/r2:
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Equation (1.13) is the main equation in this section and it allows us to estimate the 
complex amplitude on a circle of a very large radius, just as needed to calculate TC. 
It is seen in Equation (1.13) that the integral is independent of z and depends only on 
the angular polar coordinate φ . On the contrary, the multipliers before the integrals 
are φ -independent. Therefore, the φ -derivative of the field phase ∂(arg E)/∂ φ is 
independent of z:
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Consequently, z-independent are any quantities obtained from ∂(arg E)/∂ φ at large 
radii r. The most prominent example is the topological charge of Equation (1.2). 
Thus, TC conservation is just a partial case following Equation (1.14), and below we 
consider some other partial cases.

1.1.4  aSyMptOtic phaSe invariantS Of vOrtex laSer beaMS

Since the field should be continuous at φ = 0 and φ = 2π , arg E should change by an 
integer number of 2π , thus forcing TC to be an integer number. Even if in the initial 
plane it was fractional, then, on propagation, it becomes an integer [19]. However, 
Equation (1.14) indicates that, by using the function ∂(arg E)/∂ φ at large radii r, other 
propagation-invariant quantities may also be constructed, e.g.:
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with g(φ ) being an arbitrary function. To confirm our theory, we made some numer-
ical experiments. For constructing the invariants, we choose two functions: g1(φ ) = 
cos φ and g2(φ ) = rect(φ /π) (i.e. g2(φ ) = 1 at –π /2 ≤ φ ≤ π /2 and g2(φ ) = 0 other-
wise). So, we test whether or not the following values:
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are asymptotic phase invariants. We note that, in general, the functions g(φ ) and the 
argument of the complex amplitude (arg E) in Equation (1.15) are not analytic func-
tions (for instance, g2(φ ) in Equation (1.17) is not analytic). Therefore, the integral 
within Equation (1.15) cannot be evaluated by transforming to a contour integral in 
the complex plane and by using the theory of residues.

1.1.5  nuMerical SiMulatiOn

The theory is obtained for the invariant quantities, computed over an infinite-radius 
circle. This is impractical, but gives an idea that these quantities can also conserve in 
other, realistic, conditions. Below, we consider two paraxial light beams and choose 
feasible simulation parameters quite opposite to the huge-ring approximation, i.e. 
when the circle radius is much smaller than the propagation distance. For a test 
beam, we take a superposition of two Gaussian beams with optical vortices. In the 
initial plane (z = 0), such a beam has the following complex amplitude:

 E r
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A in A in, , exp exp exp ,� � �0
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where w is the Gaussian beam waist radius, n1 and n2 are the topological charges of 
the vortices, A1 and A2 are the superposition coefficients.

Figure 1.2 illustrates the intensity and phase distributions of the test beam 
(Equation 1.18) in several transverse planes for the following parameters: wavelength 
λ = 633 nm, waist radius w = 1 mm, topological charges n1 = 10 and n2 = 5, superposi-
tion coefficients A1 = 1 and A2 = 0.5, propagation distances z = 0 (initial plane), z = 

z0/2 (z0 = kw2/2 is the Rayleigh range), and z = 2z0 (far field). The calculation area is 
–R ≤ x, y≤ R with (x, y) being the Cartesian coordinates and R being the half-size 
of the area: R = 5 mm for z = 0, R = 10 mm for z = z0/2, and R = 20 mm for z = 2z0. 
Dashed lines on the phase distributions show the circles along which we calculate TC 
(Equation (1.2)) and the invariants shown in Equations (1.16) and (1.17) (all circles 
are of radius 0.8R). Figure 1.2(a, d) is obtained by Equation (1.18), while Figure 1.2(b, 
c, e, f) is obtained by using an expression for the Fresnel diffraction of a Gaussian 
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optical vortex [27,28]. Calculation of TC by Equation (1.2) yields nearly the same 
values for all three propagation distances: μ = 9.9999 at z = 0, μ = 9.9695 at z = z0/2, 
and at z = 2z0 (theoretical value of μ is 10 [13]). Calculation by Equation (1.16) yields 
the value μ 1 = –0.0015 for all three distances z. Calculation by Equation (1.17) yields 
the value μ 2 = 4.8514 at z = 0, μ 2 = 4.9702 at z = z0/2, and μ 2 = 4.9654 at z = 2z0 (it is 
obvious that the theoretical value of μ 2 should be 10/2 = 5). As another test beam, 
we consider a Gaussian beam with multiple vortices located on a circle of a radius r0. 
Such a beam can be obtained as a coaxial superposition of a Laguerre–Gaussian vor-
tex beam and of a Gaussian beam [29]. The complex amplitude of this beam reads as:
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where w is the Gaussian beam waist radius, m is the number of optical vortices with 
unit topological charge, q = 1 + iz/z0.

Figure 1.3 depicts the intensity and phase distributions of the test beam from 
Equation (1.19) in several transverse planes for the following parameters: wavelength 
λ = 633 nm, waist radius w = 1 mm, number of vortices m = 3, the radius of the circle 
with vortices r0 = 0.7w, propagation distances z = 0, z = z0/2, and z = 2z0, calculation 
area –R ≤ x, y≤ R with R = 5 mm for z = 0, R = 10 mm for z = z0/2, and R = 20 mm 

FIGURE 1.2 Intensity (a–c) and phase (d–f) distributions of a superposition of two Gaussian 
vortices (Equation (1.18)) in several transverse planes for the following parameters: wave-
length λ = 633 nm, waist radius w = 1 mm, topological charges n1 = 10 and n2 = 5, superposi-
tion coefficients A1 = 1 and A2 = 0.5, propagation distances z = 0 (a, d), z = z0/2 (b,e), and z = 
2z0 (c,f), calculation area –R ≤ x, y ≤ R with R = 5 mm (a, d), R = 10 mm (b, e), and R = 20 
mm (c, f).Dashed circles on the phase distributions are those along which TC (Equation (1.2)) 
and invariants from Equations (1.16) and (1.17) are calculated.
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for z = 2z0. Dashed lines on the phase distributions show the circles along which we 
calculate TC (Equation (1.2)) and the invariants in Equations (1.16) and (1.17) (all 
circles are of radius 0.8R). All patterns in Figure 1.3 are obtained by Equation (1.19).

Calculation of TC by Equation (1.2) yields μ = 3.0000 at z = 0, μ = 2.9996 at z = z0/2, 
and μ = 2.9941 at z = 2z0 (theoretical value of μ is 3). Calculation by Equation (1.16) 
yields the value μ 1 ≈ 0 (μ 1 ~ 10–4) for all three distances z. Calculation by Eq. (1.17) 
yields the value μ 2 = 1.4980 at z = 0, μ 2 = 1.4995 at z = z0/2, and μ 2 = 1.4970 at z = 2z0 
(i.e. μ 2 ≈ 1.5 in all transverse planes).

Thus, we note that despite the above theory proving conservation of the TC and 
other asymptotic phase invariants, when they are calculated over an infinite-radius 
circle and when the light field propagates by a finite distance, the simulation; how-
ever, demonstrates that, in practice, for some specific light fields these quantities can 
be conserved even when calculated over circles comparable to the beam transverse 
sizes, and much smaller than the propagation distance. This gives a potential for 
using these quantities for identifying incoming signals in optical wireless commu-
nications. It is hardly possible to estimate the necessary circle radius (R relative to 
z) for an arbitrary beam, but in all parts of Figures 1.2 and 1.3, this radius is about 
several times the effective beam width.

In conclusion, we have suggested in this section an alternative way to prove the 
conservation of the topological charge of a light field on propagation [30]. Our proof 

FIGURE 1.3 Intensity (a–c) and phase (d–f) distributions of a Gaussian beam with several 
vortices (Equation (1.19)) in several transverse planes for the following parameters: wave-
length λ = 633 nm, waist radius w = 1 mm, number of vortices m = 3, radius of the circle with 
vortices r0 = 0.7w, propagation distances z = 0 (a,d), z = z0/2 (b, e), and z = 2z0 (c, f), calcula-
tion area –R ≤ x, y ≤ R with R = 5 mm (a, d), R = 10 mm (b, e), and R = 20 mm (c, f). Dashed 
circles on the phase distributions are those along which TC (Equation (1.2)) and invariants 
from Equations (1.16) and (1.17) are calculated.
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is based on a so-called huge-ring approximation of the Huygens–Fresnel principle, 
which is opposite to the paraxial approximation and which we suggested here for 
the observation point on an infinite-radius ring. It turned out, that, in addition to 
the topological charge, phase distribution in areas far from the optical axis allows 
obtaining other quantities that are also propagation-invariant and the number of these 
invariants is theoretically infinite. In a simulation, we suggested two such invariants 
and tested them on two paraxial light fields. Of course, of practical interest are the 
invariants that conserve the rings of finite radii, and in the simulation we also used 
finite-radius rings. However, there may exist light fields, for which these invariants 
fail to conserve. Thus, construction of the propagation-invariants by using the con-
dition (Equation 1.15), investigating their applicability to various-kind light fields, 
and developing the methods for measuring these invariants, is yet to be studied. The 
results of this work can find applications in optical data transmission. In general 
cases, for correct measuring of the TC of non-symmetric incoming optical signal, 
phase distribution should be obtained, for example, by the Shack–Hartmann wave-
front sensor, as was studied experimentally in [31,32]. Identifying an incoming beam 
by using the invariants, like the partial TC (Equation 1.17), allows measuring the 
wavefront in a smaller area (rather than over the whole circle in the beam periphery).

1.2  TOPOLOGICAL CHARGE OF A LINEAR COMBINATION 
OF OPTICAL VORTICES: TOPOLOGICAL COMPETITION

Laser optical vortices (OV) are a particular type of laser beam that carries an orbital 
angular momentum (OAM) [33]. The OAM associated with paraxial, nonparaxial, 
and vector beams has been amply studied, as can be seen from works published in 
2019 alone [34,35,36,37,13,38,39]. Well-known examples of laser OV are presented 
by Laguerre–Gauss modes [4], Bessel [1], Bessel–Gauss beams [40], Hypergeometric 
[41], and Circular [42] beams. The listed radially symmetric beams carry the same 
OAM normalized to the beam power, which is equal to the beams’ integer TC, n. 
Non-axially symmetric OVs have also been described and known to carry differ-
ent OAM, for which a variety of formulae have been deduced [43,44]. As well as 
carrying OAM, optical vortices are also characterized by the topological charge 
TC, which was defined in [19]. The literature dealing with the calculation of TC of 
composite OVs is very scarce. For example, in [10], TC was shown to conserve in a 
medium-turbulence atmosphere over a distance of several kilometers, while in [45], 
TC variations were numerically studied of vortex soliton in a non-linear medium. 
Sometimes authors identify TC and OAM, moreover, sometimes they assert that TC 
can be changed via diffraction by simple dielectric obstacles. On the other hand, in 
the articles [46,11] it was shown that the sectorial aperture can significantly change 
the OAM while the TC remains constant and equal to the initial value. Thus, it 
became necessary to provide some clarification on this issue.

In this section, we focused on some noteworthy examples of the TC behavior in 
optical vortex arrays that show a cautious approach to calculating TC. In particu-
lar, we demonstrate that TC of an optical vortex is conserved in spite of amplitude 
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distortion and shift of the OV center across the carrier beam. It is also shown that in a 
linear superposition of simple OVs whose amplitude is given by A(r)exp(inφ ) (where 
(r, φ ) are the polar coordinates in the beam cross-section) the constituent beams 
enter a “competition”: TC of the resulting beam is defined by both magnitude and 
sign of the constituent vortex, +n, –n, as well as being dependent on the amplitude of 
weight coefficients of the linear combination.

1.2.1  tc Of an Ov after paSSing an aMplitude MaSk

Below, we analyze changes in TC resulting from “cut-off” of a sector-shaped portion 
from an optical vortex. OVs with a “cut-off” sector have been discussed in detail by 
Volyar et al. [46]. This work has given an impetus to study the topic of TC conserva-
tion following different types of distortions and transformation of an OV. The defini-
tion of TC of an OV (and an arbitrary paraxial light field) was given by Berry [19] 
and J. Nye [21]. For an arbitrary light field with complex amplitude E(r, φ ), where (r, 
φ ) are the polar coordinates, can be written in the form [19]:
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This means that the TC monochromatic beam is specified as the total number of opti-
cal vortices in the transverse cross-section of a light stream taking into account their 
signs. Let us write the complex amplitude En(r, φ ) with a cut-off sector as:

 E r A r in f, exp ,� � �� � � � � � � � �  (1.21)

where the sector function reads as:
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Substituting Equation (1.21) into Equation (1.20) yields:
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 (1.23)

The final equality in Equation (1.23) reflects the fact that the second term within the 
brackets is real. We may infer that if the aperture is only φ -angle dependent, TC of 
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an OV remains unchanged. Although, if strictly δ = 0 in Equation (1.22), then instead 
of Equation (1.23) it should be written that TC = αn/π . But fractional TС can only 
be in the initial plane. The proof of Equation (1.23) can easily be repeated for an 
arbitrarily-shaped amplitude filter (Equation 1.22), which is defined by both angle φ 
and radius r:
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where Ω is the diaphragm cut-off area. Then, instead of Equation (1.23), we obtain 
a similar relation:
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A weak transmission (δ << 1) was introduced in Equations (1.22) and (1.24) in the 
region where the diaphragm should not transmit light in order to avoid the 0/0 uncer-
tainty in the division of E(r, φ ) in Equations (1.23) and (1.25) on E(r, φ ). We note 
that the derivative ∂ (nφ )/∂ φ is equal to n only if the angle φ can be arbitrary (0 < φ 
< 2π ). This means that instead of conditions in Equations (1.22) and (1.24) it is suf-
ficient that a closed curve existed around the singular point (OV center) with nonzero 
field amplitude on this curve. A simulation (Figure 1.4) confirms this requirement. 
An indirect confirmation of the conservation of TC of an optical vortex with a cut-off 

FIGURE 1.4 Distributions of intensity (a,c,e,g) and phase (b, d, f, h) of a Gaussian optical 
vortex bounded by a sector-shape diaphragm in the initial plane z = 0 (a–d) and after propaga-
tion in free space (e–h) for two different angles of the sector aperture α = π /6 (a, b, e, f) and α 
= π /4 (c, d, g, h). Dashed rings (f, h) show the circle over which the TC was calculated. White 
text (e, g) shows the TC.
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sector Equations (1.23) and (1.25) is that the OAM of such a beam is equal to the 
topological charge. Indeed, the OAM normalized to the beam power:
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It is seen from Equation (1.25) that multiplying the complex amplitude (Equation 
1.21) of the OV by any real function does not change TC of the original OV, as a 
real function does not change the complex amplitude argument in Equation (1.20). 
Optically speaking, the multiplication of the light field amplitude by a real function 
is equivalent to the passage of light through a thin amplitude mask (with the above 
conditions taken into account).

When the spiral phase plate is bounded by a sector aperture (Equation 1.21), a 
Gaussian beam after passing has the following complex amplitude in the Cartesian 
coordinates:
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where w is the Gaussian beam waist radius, n is the TC of the spiral phase plate, α 
from Equation (1.22) is the half-angle of the sector aperture, (x0, y0) is the shift vector 
of the sector aperture (the singular point should be inside the sector), rect(x) = 1 at 
|x| ≤ 1/2 and rect(x) = 0 at |x| > 1/2, and arg(x) is meant as the principal value of the 
argument (i.e. –π < arg(x) ≤ π ).

Figure 1.4 shows distributions of intensity (a,c,e,g) and phase (b,d,f,h) of a 
Gaussian optical vortex bounded by a sector-shape diaphragm in the initial plane z = 

0 (a–d) and after propagation in free space (e–h) for two different angles of the sec-
tor aperture α = π /6 (a,b,e,f) and α = π /4 (c,d,g,h). Distributions in the initial plane 
are obtained by Equation (1.27), while distributions at a distance are obtained by the 
Fresnel transform implemented numerically in MATLAB® as a convolution using 
the fast Fourier transform. The following parameters are used in the calculations: 
wavelength λ = 532 nm, Gaussian beam waist radius w = 1 mm, TC of the spiral phase 
plate n = 5, vector of the sector diaphragm shift (x0, y0) = (–0.5, 0) mm, propagation 
distance z = z0/2 (z0 = kw2/2 is the Rayleigh range), calculation area –R ≤ x, y ≤ R (R = 

12.5 mm, although Figure 1.4 shows smaller areas), number of pixels N = 4096. The 
obtained values are 4.9668 for α = π /6 and 4.9693 for α = π /4.
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1.2.2  tc Of an Off-axiS Optical vOrtex

In this subsection, we analyze how TC changes upon an off-axis shift of the OV 
center from the optical axis of a radially symmetric beam with amplitude A(r). Can 
an OV be shifted by an arbitrary vector (r0, φ 0). Then, instead of Equation (1.21), the 
complex amplitude En(r, φ ) takes the form:
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� � �0

0

 (1.28)

Substituting Equation (1.28) into Equation (1.20) yields:
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r

d
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0

2

0
. (1.29)

The final equality in Equation (1.29) stems from the fact that for large radii (r >> 

r0), only the first term is retained in the denominator. It is seen from Equation (1.29) 
that an off-axis shift of the OV center relative to a radially symmetric beam (e.g. a 
Gaussian beam) does not lead to a change in TC. In the meantime, for a beam with 
an off-axis phase singularity center, the normalized OAM is lower than TC of the 
whole beam, with the former decreasing with increasing shift magnitude r0 [47,48].

Figure 1.5 shows the distribution of the intensity and phase of a Gaussian beam 
with an off-axis optical vortex in the initial plane and after propagation in space for 
different displacements of the vortex from the optical axis. The complex amplitude 

in the initial plane is E x y re r e w x y wn
i i

n

, exp� � � �� ��
�

�
� � �� ��

�
�
�

� �
0

2 2 20 , where w is 

the waist radius of the Gaussian beam, n and (r0, φ 0) are the topological charge of 
the optical vortex, and the vector (in polar coordinates) of its displacement from the 
optical axis. The complex amplitude after propagation in space is calculated using 
a numerical Fresnel transform realized in the form of convolution using the fast 
Fourier transform. The following calculation parameters were used: w = 1 mm, n = 7, 
φ 0 = 0, r0 = w0/4 (Figure 1.5(a, b)), r0 = w0/2 (Figure 1.5(c, d)), r0 = 2w0 (Figure 1.5(e, 
f)), space distance z = z0/2, computational domain –R ≤ x, y ≤ R (R = 5 mm). The TC 
in the initial plane, calculated numerically by the formula in Equation (1.20) (along 
a ring of radius 0.8R), is 6.9997 for r0 = w0/4 and r0 = w0/2, 6.9995 for r0 = 2w0, i.e. in 
all cases about 7. At a distance of TC, it turned out to be 6.9989, 6.9989, and 6.9986, 
respectively.

An interesting case occurs when an optical vortex is bounded by a diaphragm in 
the initial plane and therefore it is impossible to use the limit r → ∞ like in Equation 

(1.29). For example, if a spiral phase plate (SPP) is bounded by a circular diaphragm 
with a radius R and is shifted horizontally from the optical axis by a distance x0, a 
plane wave after passing such SPP acquires the following complex amplitude:

 E r
r

R
in

r

r x
( , ) circ exp arctan

sin
cos

,� �
�

� �
�
�

�
�
� �

�

�
�

�

�
�

�

�
�

�

�
�

0

 (1.30)
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where circ(r/R) = 1 for r ≤ R and circ(r/R) = 0 for r > R. Topological charge (Equation 

(1.20)) of the initial vortex field from Equation (1.30) is given by:

 TC
n r rx

R x rx
d

n x R

n x R
� �

� �
�

�

�

�
�
�

�
�2 2 2

2
0

2
0
2

0
0

2
0

0
�

�
�

�
�

cos
cos

, ,

/ , .��
 (1.31)

Equation (1.31) illustrates that shifting the SPP center conserves TC which equals n 
if the SPP center is within the diaphragm.

If the SPP center is on the diaphragm edge, TC decreases two times immedi-
ately. Equation (1.31) is consistent with the condition from the previous section 
which states that there should not be zero amplitude around the center of singularity. 
Interestingly, the OAM of the beam from Equation (1.30) decreases continuously till 
zero when the shift distance x0 increases from 0 to R:

 
J

W
n

x

R
z � �

�

�
�

�

�
�1 0

2

2 . (1.32)

From Equation (1.32), if x0 = R, the beam’s OAM is zero.

FIGURE 1.5 Distributions of intensity (a, c, e, g, i, k) and phase (b, d, f, h, j, l) of a Gaussian 
beam with an off-axis optical vortex in the initial plane (a, b, e, f, i, j) and after propagation 
in space (c, d, g, h, k, l) for different lateral displacements of the vortex from the optical axis. 
Calculation parameters: waist radius w = 1 mm, TC is n = 7, displacement r0 = w0/4 (a–d), r0 
= w0/2 (e–h), r0 = 2w0 (i–l); φ 0 = 0 in all figures, the propagation distance in space is z = z0/2 
(z0 is the Rayleigh distance). Thedashed rings on the phase distributions denote the radius of 
the ring by which the TC was calculated by Equation(1.20).
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1.2.3  tc Of an Optical vOrtex with Multi-center Optical SingularitieS

Below, we analyze a laser Gaussian beam with m embedded simple (TC = +1) phase 
singularities distributed uniformly on a circle of radius a, i.e., at points defined by 
the Cartesian coordinates:

 
x a

y a

p

p

�

�

�
�
�

��

cos ,

sin ,

�

�
 (1.33)

where φ p = 2πp/m, p = 0, …, m – 1. The complex amplitude of such an OV at an 
arbitrary distance from the waist can be shown to be given by:

 E r z
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r e
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m im
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1 2
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0
2  (1.34)

where σ = 1 + iz/z0 and z0 = kw0
2/2 is the Rayleigh range (k is the wave number). 

Substituting Equation (1.34) into Equation (1.20) yields:
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lim Im . (1.35)

Because at r → ∞, the term am in the denominator is negligibly small, TC of the 
beam Equation (1.34) turns out to be independent on the distance z passed and the 
radius a of the circle of the OV centers, instead, being equal to the number of simple 
OVs in the beam. This result can be extended onto an arbitrary case of m OV centers 
with multiplicity mp are found at points (rp, φ p), where p = 1, 2, …m and the carrier 
amplitude A(r) is axially symmetric. Such a complex OV is given by the complex 
amplitude [49,50]:

 E r z A r re r em
i

p
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p

m

p
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, , .� � ��� � � � � �� �
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1

 (1.36)

Substituting (1.36) into (1.20) yields:
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m

� . (1.37)

Equation (1.37) suggests that in a beam with axially symmetric amplitude and sev-
eral degenerate simple OVs of Equation (1.36), with their centers located at arbitrary 
points over the beam cross-section, TC equals the sum of multiplicity (degeneracy) 
values of all constituent vortices.
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1.2.4  tc Of an On-axiS cOMbinatiOn Of Optical vOrticeS

Here, we discuss a light field whose complex amplitude is described by a linear 
combination of a finite number of Laguerre–Gaussian (LG) modes with the numbers 
(n, 0):

 E r z
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Substituting Equation (1.38) into Equation (1.20) yields a relation for TC:
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Following a limiting passage r → ∞ under the integral sign in Equation (1.39), the 
numerator and denominator each retain just one highest-power term under the sum 
sign. If M > N, then TC of the beam in Equation (1.38) is TC = –M, if M < N, then 
TC in Equation (1.38) equals TC = N. Finally, if M = N, instead of Equation (1.39), 
we obtain:

 TC iN
C e C e

C e C e
d

N
iN

N
iN

N
iN

N
iN

�
�� �
�� �
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2
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�

Im

���
. (1.40)

Thus, we can infer that if in a linear combination of a finite number of LG modes 
with different TC, the absolute value of the maximum positive TC is larger than the 
maximum negative TC, the TC of the entire beam equals the positive TC = N. If the 
opposite is the case, the resulting TC equals the negative TC = –M. Finally, in the next 
section we show that for M = N, the integral in Equation (1.40) can be taken analyti-
cally and, based on Equation (1.42), TC = N if |CN| > |C–N| or TC = –N if |CN| < |C–N|. 
When |CN| = |C–N|, TC of the entire beam equals zero.

1.2.5  tc Of the SuM Of twO Optical vOrticeS

Now, let us analyze a simple but rather interesting case that produces an unex-
pected result. Assume a light field with a complex amplitude in the initial plane that 
describes an axial superposition of two Gaussian OVs with different TC and different 
amplitudes:

 E r ae be ein im r w, ,� � �� � � �� � � 2 2

 (1.41)
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where w is the Gaussian beam waist radius, n and m are integer topological charges of 
the OVs, a and b are weight coefficients in the OV superposition, which are generally 
complex. Substituting Equation (1.41) into Equation (1.20) yields a relation for TC:
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The integral in the right-hand side of Equation (1.42) can be reduced to a sum of two 
integrals:
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With the first integral in Equation (1.43) being trivial, the second integral can be 
rearranged as:

 TC
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a b
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a b
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2 2
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With the coefficient before the cosine function being not larger than unity, this is a 
reference integral (expression 3.613.1 in [51]):
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 (1.45)

In the case the integration interval is from zero to 2π , rather than being to π , the 
expression needs to be multiplied by two. Then, Equation (1.42) takes the form:

 TC
n m n m a b

a b
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�2 2

2 2

2 2
. (1.46)

For completeness sake, the normalized OAM of the beam in Equation (1.41) can be 
given in the form:

 OAM
na mb

a b
� �

�

2 2

2 2 . (1.47)

From Equation (1.46) it follows that if |a| > |b|, then TC = n and if |a| < |b|, then TC = 

m. If m = n, as can be expected, we obtain that TC = n. Thus, TC of the resulting beam 
in Equation (1.41) equals that of the constituent OV with the larger amplitude. At |a| 
= |b|, there occurs degeneracy (photon entanglement), with Equation (1.46) becoming 
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invalid due to uncertainty 0/0. Because of this, at |a| = |b|, the field in Equation (1.41) 
needs to be rearranged to the form:
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Substituting Equation (1.48) into Equation (1.20) yields

 TC
n m a b

d
n m

r
� �

�
� � ��

�
�

�
�
� � �

�� �lim
arg arg

.
1

2 2 2
0

2

� �
� � �

�

 (1.49)

As we can infer from Equation (1.49), the superposition of two same-amplitude OVs, 
with one TC being even and the other odd, produces an OV with a fractional (semi-
integer) TC. It should be noted that it is only in the initial plane that TC of a beam can 
be fractional, whereas during propagation TC needs to be an integer for the ampli-
tude to be continuous. It is worth noting that OAM in Equation (1.47) equals TC in 
Equations (1.46) and (1.49) only when either a = 0, or b = 0, or a = b. At the same time, 
if the beam is degenerate (a = b), the content of the constituent angular harmonics of 
the beam cannot be derived from the known TC. For instance, all the below-listed 
beams have the same TC and OAM, which is equal to 4:
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Figure 1.6(a, b) shows the intensity and phase of the superposition of two Gaussian 
vortices in the initial plane for the following calculation parameters: waist radius w = 

1 mm, topological charges n = 12 and m = 7, weight coefficients are unit modulo, but 
with a random phase: a = e2.9616 i, b = e0.2247 i, computational domain –R ≤ x, y ≤ R (R = 

1 mm). The TC calculated numerically by formula (1.20) is 9.4708, i.e. approximately 
(12 + 7)/2. Shown in Figure 1.6 (c, d) are the intensity and phase of the same super-
position, but at the Fresnel distance (for the wavelength λ = 532 nm) and in a wider 
calculated region (R = 10 mm). The TC calculated numerically by Equation (1.20) is 
11.8167, that is, about 12. In both cases, the TC was calculated by integration over a 



19Topological Charge of Superposition 

ring of radius 0.8R. This example corresponds to the situation described by amplitude 
in Equation (1.46), and when the amplitude moduli are equal |a| = |b| for two vortices, 
the TC of the entire beam will be equal to the larger of the two TC, i.e. 12.

1.2.6  tOpOlOgical charge in an arbitrary plane

In this subsection, we shall demonstrate that a combination of two same-amplitude 
(a = b) Gaussian OVs of Equation (1.41) with different TC produces an OV with half-
integer TC of Equation (1.49) in the initial plane, generating an OV with integer TC 
as it propagates. Actually, if in the initial plane there is a Gaussian OV:

 E r e r w in, ,� �� � � � �2 2

 (1.51)

following the propagation through an ABCD-system, its complex amplitude is given 
by:
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FIGURE 1.6 The intensity (a, c) and phase (b, d) of the axial superposition of two Gaussian 
OVs with TC 12 and 7, but with the same weight amplitudes (in Equation (1.41)) in the initial 
plane (a, c) and at the Rayleigh distance (c, d). Dashed rings on the phase distributions denote 
the radius of the ring by which the topological charge was calculated by the Equation (1.20).
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where:
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Since in Equation (1.52), Iν (x) is a modified Bessel function, then for the superposi-
tion in Equation (1.41), the complex amplitude is:
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Retaining in the asymptotic expansion of the modified Bessel function just first two 
terms yields a relationship to describe the difference of two modified Bessel func-
tions of adjacent orders at large values of the argument:
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(1.55)

Then, at large values of ρ , Equation (1.54) takes the form:
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In view of Equations (1.42) and (1.46), Equation (1.56) suggests that at |a| = |b|, in 
the initial plane TC = (m + n)/2. At the same time, in any other plane, modules of 
the coefficients in front of einθ and eimθ are proportional to |n| and |m|, being no more 
equal to each other (at n ≠ m), hence, according to Equation (1.46), TC = max(n, m). 
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Note, however, that if in Equation (1.56) |an| = |bm|, we again find ourselves in the 
situation of degeneracy, because in view of Equation (1.46) and at z > 0, TC of two 
OVs of Equation (1.41) equals the arithmetic mean of Equation (1.49): TC = (n + m)/2. 
This situation can be addressed as follows: with the equality |an| = |bm| meaning that 
|a| ≠ |b|, Equation (1.46) suggests that the total TC of the field in the initial plane 
equals that of the OV with the larger amplitude (respectively, |a| or |b|). In the mean-
time, the integer TC in the initial plane conserves upon propagation.

1.2.7  tOpOlOgical charge fOr an Optical vOrtex 
with an initial fractiOnal charge

For an OV with fractional TC = μ (μ is an arbitrary real number), a relation to describe 
the corresponding fractional TC has been derived [52]. The mutual transformations 
between beams with fractional-order and integer-order vortices were considered in 
detail in [53]. An OV with fractional TC, which is possible only in the initial plane, 
can be decomposed in terms of OVs with integer TC n (μ is an arbitrary real number) 
as follows:
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In Equation (1.57), the function Ψ(r, z) is real. Substituting the right-hand side of 
Equation (1.57) into a general relation for OAM:
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yields:
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where W is the energy (power) of the beam:
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The series in the right-hand side of Equation (1.59) can be reduced to a reference 
series [51]:
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using which, the final relation for the normalized OAM of the field in Equation (1.59) 
is rearranged to:
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From Equation (1.62) it follows that OAM equals TC = μ only if μ is integer and 
half-integer. This conclusion is in agreement with Equations (1.53) and (1.55) for the 
linear combination composed of two angular harmonics.

We obtain the expression for the TC of the optical vortex in the Fresnel diffraction 
zone for the initial field with a fractional topological charge from Equation (1.57), 
but for definiteness we choose the amplitude function in the form of a Gaussian one. 
Then instead of Equation (1.57) we get:
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In view of Equation (1.52), the amplitude of the optical vortex in Equation (1.63) for 
any z will be equal to (B = z, A = D = 1):
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We substitute Equation (1.64) in Equation (1.20) and, when passing to the limit in 
Equation (1.20), we take into account the asymptotic behavior in Equation (1.36), 
then we obtain the expression for calculating the TC of the optical vortex (1.63):
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Equation (1.65) is remarkable in that the answer is known, which was numerically 
obtained in [19], but has not yet been obtained analytically. Calculation (1.65) can 
be called the Berry problem [19]. The right-hand side of Equation (1.65) should give 
only whole TC, closest to μ :

 TC n n x
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From a comparison of Equations (1.65) and (1.66), it can be said that the TC in 
Equation (1.65) is equal to the TC of the angular harmonic in the series in the numer-
ator and the denominators for which the weight coefficient is greater in absolute 
value. This is also consistent with the results for a complete linear combination of 
LG modes in Equation (1.38) and for the sum of two angular harmonics in Equation 
(1.41).

The TC of an optical vortex can be measured using a cylindrical lens by the 
method described in [15]. Figure 1.7 shows the intensity distributions at a double 
focal length from a cylindrical lens for optical vortices with an initial fractional 
TC in Equation (1.57). It can be seen that on the line at an angle of –45 degrees in 
the center of the picture are two zeros (two dark lines) (Figure 1.7a) for μ < 2.5 and 
three zeros (three dark lines) for μ > 2.5 (Figure 1.7b, c, d). As shown in Figure 1.7, 
for arbitrary initial fractional TC between 2 and 2.5, TC of the optical vortex equals 
2, and for arbitrary initial fractional TC (Equation (1.57)) higher than 2.5 and lower 
than 3, TC of the beam equals 3. The experiment in Figure 1.7 confirms the numeri-
cal result in Equation (1.66).

1.2.8  tOpOlOgical charge Of an elliptic Optical 
vOrtex eMbedded in a gauSSian beaM

Let us analyze a simple example of an OV with introduced phase distortion by mak-
ing it ellipse-shaped. While for a conventional OV the complex amplitude in the 
initial plane is given by:

 E r A r in, exp ,� �� � � � � � �  (1.67)

for an elliptic vortex imbedded, say, into a Gaussian beam (or any other radially sym-
metric beam) it takes the form:
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FIGURE 1.7 Intensity distributions measured at a distance z = 200 mm (at a double focal 
length from a cylindrical lens) from a spiral phase plate with fractional order μ : (a) 2.3, (b) 
2.5, (c) 2.7, (g) 2.9. The sizes of the images are 4,000 by 4,000 microns.
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Substituting Equation (1.68) into Equation (1.20) yields:
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Note that a result similar to Equation (1.69), but only for n = 1, was previously 
obtained in [54]. From Equation (1.69) it follows that the fact that an optical vortex or 
SPP is ellipse-shaped does not change the TC of the original simple OV in Equation 
(1.67). At any degree of ellipticity (any α ), an elliptic OV has TC = n. In the mean-
time, OAM of an elliptic OV is always lower than n, being equal to:
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where y = (1 + α 2)/(2α ) > 1 and Pn(y) is Legendre polynomial. Figure 1.8 shows the 
intensity and phase distributions of a Gaussian beam with an elliptical vortex in the 
initial plane and after propagation in space for different ellipticities. The complex 

amplitude in the initial plane is E x y x y w x i ye
n

, exp� � � � �� ��
�

�
� �� �2 2 2 � , where w 

is the waist radius of the Gaussian beam, n and α are the topological charge and ellip-
ticity of the optical vortex, respectively. The following calculation parameters were 
used: w = 1 mm, n = 7, α = 1.1 (Figure 1.8(a,b,c,d)), α = 1.5 (Figure 1.8(e,f,g,h)), α = 3 
(Figure 1.8(i,j,r,l)), the distance of propagation in space z = z0/2, the computational 
domain is –R ≤ x, y ≤ R (R = 5 mm). The TC in the initial plane, calculated numeri-
cally by Equation (1.20) (along a ring of radius 0.8R), is 6.9997 at α = 1.1, 6.9996 at α 

= 1.5, 6.9987 at α = 3, that is, in all cases about 7. TC turned out to be 6.9989, 6.9988, 
and 6.9979, respectively. That is, it is also approximately equal to 7.

Summing up, it has been theoretically shown [55] that OVs conserve the inte-
ger TC when passing through an arbitrary aperture or shifted from the optical axis 
of an arbitrary axisymmetric carrier beam. If the beam contains a finite number 
of off-axis optical vortices with different-value same-sign TC, the total TC of the 
resulting beam has been shown to be equal to the sum of all constituent TCs. In this 
case, there is no topological competition, because it takes place as a result of on-axis 
superposition of OVs. By way of illustration, if an on-axis superposition is composed 
of a finite number of Laguerre–Gaussian modes (n, 0), the resulting TC equals that 
of the constituent mode with the highest TC (including sign). If the highest positive 
and negative TCs of the constituent modes are equal in magnitude, the “winning” 
TC is the one with the larger absolute value of the weight coefficient. If the constitu-
ent modes have the same weight coefficients, the resulting TC equals zero. If the 
beam is composed of two on-axis different-amplitude Gaussian vortices with differ-
ent TC, the resulting TC equals that of the constituent vortex with the larger absolute 
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value of the weight coefficient amplitude, irrespective of the correlation between 
the individual TCs. If the constituent beams have equal weight coefficients, there 
occurs degeneracy, with the resulting TC being equal to the mean arithmetic of the 
constituent Gaussian OVs. If in the superposition of two Gaussian OVs, one TC is 
odd and the other is even, the resulting TC in the initial plane is half-integer. As the 
beam propagates, degeneracy is eliminated, with the resulting TC becoming equal 
to the larger (positive) integer constituent TC. This effect has been given the name 
“topological competition of optical vortices”. Theoretical predictions have been cor-
roborated by numerical simulation and experiments.

1.3  TOPOLOGICAL CHARGE OF ASYMMETRIC 
OPTICAL VORTICES

Presently, laser vortex beams [56], or optical vortices (OV), have been actively stud-
ied because they have found uses in many optical applications. For instance, OVs 
are utilized in quantum information science [57], cryptography [58], wireless com-
munication systems [59], data transmission in optical fibers [60], second-harmonic 
generation [61], short-pulse interferometry [62], and probing of turbulent media 

FIGURE 1.8 Distributions of intensity (a, c, e, g, i, k) and phase (b, d, f, h, j, l) of a Gaussian 
beam with an elliptical vortex in the initial plane (a, b, e, f, i, j) and after propagation in space 
(c, d, g, h, k, l) for different ellipticities. Dashed rings on the phase distributions denote the 
radius of the ring by which the TC was calculated by the Equation (1.20).
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[63]. Vortex beams are characterized by two major parameters, namely, topological 
charge (TC) [19] and orbital angular momentum (OAM) [33], which describe differ-
ent aspects of an OV. With TC depending only on the phase of a light field, OAM 
is both phase- and amplitude- (intensity) dependent. TC can be measured using a 
cylindrical lens [15] or a triangular aperture [64]. For measuring OAM, a cylindri-
cal lens can also be utilized [12,13]. The OAM spectrum of OVs, which defines the 
energy contribution in each constituent angular harmonic of the laser beam, can be 
measured with a multi-order diffractive optical element [65] or based on intensity 
moments [66,11]. For radially symmetric OVs (e.g. LG and BG beams [4,40]), whose 
complex amplitude can be given by E r z A r z in( , , ) ( , )exp( )� �� , where A(r, z) is the 
radial component of the beam’s complex amplitude, n is TC of the beam, and (r, φ , 
z) are the cylindrical coordinates, TC is defined by OAM normalized to the beam’s 
power and equals n. It is worth noting that an integer TC of a radially symmetric OV 
remains unchanged upon propagation. For other types of vortex beams, TC needs to 
be calculated individually. Meanwhile OAM of the beam remains unchanged upon 
propagation and can be calculated in the source plane, for TC this is not always 
the case. For instance, TC of a combined beam composed of two LG modes with 
different-waist radii is not conserved [22].

In this section, we derive relationships to define TC of certain radially asymmet-
ric vortex laser beams. In previous publications of the present authors, normalized 
OAMs of such beams were derived, but patterns of TC behavior were not analyzed. 
Below, we derive relationships to describe TC of asymmetric LG, BG, and Kummer 
beams [44,67,68], superposition of two HG modes [69], and a vortex HG beam [70]. 
We note that the considered asymmetrical beams are obtained in different ways. 
Asymmetric LG and Kummer beams are obtained from the conventional symmetric 
LG and Kummer beams by a transverse complex shift in the Cartesian coordinates. 
Asymmetric BG beams are obtained by a hybrid technique: complex shift is applied 
only to the Bessel function, whereas the Gaussian function remains unshifted. Vortex 
HG beams are derived from the conventional HG beam by an astigmatic transform 
using a cylindrical lens. And another vortex beam is a superposition of two HG 
modes with complex weight coefficients. Therefore, we calculated TC for each type 
of beam separately.

1.3.1  tc Of an aSyMMetric lg beaM

Upon free-space propagation of an asymmetric LG (aLG) beam, at a distance z its 
complex amplitude is given by [44]:
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where:
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where � ( ) , ; ,l l l� � � �� �1 0 1 0 , (x, y, z) and (r, φ, z) are the Cartesian and cylindri-
cal coordinates, (x0, y0) are the complex coordinates of the off-axis shift of the LG 

beam, w is the Gaussian beam waist radius, l is TC of the optical vortex, L xp
l � � is 

the associated Laguerre polynomial, zR = kw2/2 is the Rayleigh range, and k = 2π /λ 
is the wavenumber of light of wavelength λ . The transverse intensity of the beam is 
not radially symmetric, unlike conventional LG beams [4]. If (x0, y0) are real, beam 
in Equation (1.71) becomes a conventional off-axis LG mode.

Below, we discuss the TCs of various OVs derived in this work in relation to their 
OAMs derived in the previous studies. In doing so, we shall make use of formulae for 
calculating the OAM of paraxial laser beams and beam power [44]:
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For an an LG beam, OAM normalized to power is given by [44]:
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where:
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Unlike TC, an increase or decrease in OAM is fully determined by the sign of the 

quantity Im *x y0 0� �, because the relation in square brackets in Equation (1.75) is 
always larger than or equal to the unit.

Below, we calculate the TC of an aLG beam of Equation (1.71), using Berry’s 
formula [19]:
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We note that the standard definition of the TC is the number of 2π phase changes on 
a closed loop. Unfortunately, this definition is not constructive, and does not allow 
analytical calculation of the TC of optical vortices. It is a great merit of Berry that 
he proposed a more constructive TC in Equation (1.77), which we use in this paper. 
Both of these definitions lead to the same result.

Assuming (l > 0) that the complex shift in Equation (1.72) is given by x0 = 

aw, y0 = iaw, the term [( ) ( )]x x i y y l� � �0 0  in Equation (1.71) takes a simple 

form r el ilϕ, with the variable ρ 2 in Equation (1.72) taking the following form: 
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2
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2 2 2� � � � � �( ) ( )x x y y r awrei , where a is a dimensionless constant whose 
magnitude defines the asymmetry of the beam. With due regard to the above consid-
erations, the derivative with respect to the angle φ of the function in Equation (1.71) 
takes the form:

 

� � �
�

� � �

� �
� �

�
� �

�

�
�
�

�

�
�
�
� �

E r z
ilE r z

w z

ik

R z
iawre E ri

, ,
, ,

�
�

�

�1
2

22 ,, ,

, , ,

�

� �
� �

�

z

iawre

w z L

d

d
L E r z

i

p
l p

l

� �

�
� � � �

� � � �4 1
2

 (1.78)
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Substituting Equation (1.78) into Equation (1.77) yields (w = w(0)):
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