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Chapter 4

Calculation of periodic diffractive micro- 
and nanostructures    

This chapter describes a numerical method for solving the diffraction problem in 
periodic diffractive micro- and nanostructures.  The method is used to calculate 
and study the diffraction patterns for a number of modern trends in nanophotonics, 
including plasmonics, metamaterials, nanometrology.  

Section 4.1 delas with the method of rigorous coupled-wave analysis to solve 
the problem of diffraction of a plane wave on two- and three diffraction structures 
and diffractive gratings. This numerical method for solving Maxwell’s equations 
is focused on the analysis of micro- and nanostructures described by a periodic 
function of the dielectric constant. This variant of the method is a modification of the 
numerically stable modification of the method of rigorous coupled-wave analysis, 
proposed by M.G. Moharam, D.A. Pommet, B.G. Eric and T.K. Gaylord in 1995 
for solving the problem on two-dimensional diffractive structures. Attention is also 
given to the current variant of the method, including the case of tensor dielectric 
and magnetic permittivities and diffraction on three-dimensional structures. The 
considered variant of the method also includes the application of special rules of 
expansion into a Fourier series of the product of functions proposed by Lifeng Li 
in 1996. The application of these rules greatly improves the convergence of the 
method in solving the diffraction problem on metallic and metallic–dielectric 
diffractive structures.

Section 4.2 examines surface electromagnetic waves (surface plasmon– 
polaritons), with the study and calculation of the diffraction structures for the 
formation of interference patterns of surface electromagnetic waves. The diffractive 
structures consist of a dielectric diffraction grating and a metallic layer deposited 
on the substrate.  The calculation and modelling of structures are carried out by 
rigorous coupled-wave analysis. The parameters of the diffraction structure are 
calculated from the excitation conditions at the lower boundary of the metal layer of 
the given set of surface electromagnetic waves of different shapes and directions. As 
a result, a periodic interference pattern of surface electromagnetic waves forms 
directly under the metallic layer. Periods of of the formed interference patterns are 
substantially of the ???sub-wavelength type??. The promising field of application 
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of the considered diffraction structures is nanolithography, based on recording the 
interference patterns of surface electromagnetic waves in an electron resist.  

Section 4.3 considers the magneto-optical properties of two-layer metallic-
dielectric heterostructures consisting of a metallic diffractive grating and a dielectric 
magnetized layer.  Calculation and study of the magneto-optical properties of 
structures are based on the method of rigorous coupled-wave analysis. The results 
show that these structures have resonant magneto-optical effects associated with 
the rotation of the plane of polarization of the incident wave and with a change in 
the reflectance (transmittance) of the structure when the magnetization of the layer 
changes. The above structures can be used as magnetic field sensors, gas sensors, 
the devices of the intensity modulation of light, controlled by an external magnetic 
field.  

In Section 4.4 we consider the problem of metrology of nanostructures 
based on the reflectometry method (ellipsometry).  Optical reflectometry is a 
contactless method of measuring the parameters of micro- and nanostructures by 
measuring reflected ???from the structure of the field???. The section reviews a 
number of mathematical methods for determining the geometric parameters 
of diffraction gratings by measuring the parameters of the wave in the reflected 
zero order diffraction. The reflected field is by rigorous coupled-wave analysis. 
The effectiveness of the methods is illustrated by the example of determining the 
parameters of a trapezoidal profile. The error in determining the parameters of a 
trapezoidal profile is less than 1 nm.  

4.1. The method of rigorous coupled-wave analysis for solving 
the diffraction problem in periodic diffractive structures  

This section describes the method of Fourier modes (rigorous coupled-wave 
analysis), designed to address the problem of diffraction of a plane electromagnetic 
wave on a periodic diffractive structure.  This method of solving Maxwell’s 
equations is a variation of the differential method and occupies a leading in the 
breadth of functionality and use.  The method is applicable for the analysis of 
periodic structures with complex geometry, the material of the structure can be 
anisotropic. Using layers of an anisotropic absorbing material, the method can be 
used efficiently to solve the problem of diffraction on aperiodic structures [14, 15].  

4.1.1. The equation of a plane wave 

This item is auxiliary. We considered the conclusion of the general equation of a 
plane wave in an isotropic medium used in the following description of the rigorous 
coupled-wave analysis.

We write the Maxwell equations and constitutive equations in the Gaussian 
system of units:  
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For a monochromatic field  
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system (4.1.1) becomes:  
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where k0 = 2π/λ, λ is the wavelength. Expanding the rotor operator, we obtain:  
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(4.1.4)  

To obtain the equation of a plane wave we seek the solution of equations (4.1.4) 
in the form of  

	 ( )0( , , ) = exp ( ) ,α β γ+ +x y z ik x y zΦ Φ 	 (4.1.5)  

where =   
T

x y z x y zE E E H H HΦ is the column vector of the field 
components. The values α, β, γ ​​in (4.1.5) determine the direction of propagation of 
a plane wave. Substituting (4.1.5) into (4.1.4), we obtain:  
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We represent the equation (4.1.6) in matrix form:  
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By direct computation we can easily obtain that the determinant of system (4.1.7) 
has the form:  

	
( )22 2 2det = .εµ α β γ εµ+ + −A

	
(4.1.8)

  

The sought non-trivial solution of (4.1.7) exists when the determinant (4.1.8) is 
zero. In the case μ = 1 the determinant (4.1.8) vanishes if  

	
2 2 2 = .α β γ ε+ + 	 (4.1.9)  

Let us write the solution of (4.1.6) explicitly. Under the condition (4.1.9), the 
rank of the system (4.1.7) is equal to four, so to record the solution we fix the values ​​
of the amplitudes Ez and Hz. We introduce the so-called E- and H-waves. For the 
E-wave Ez ≠ 0, Hz ≡ 0 and for the H-wave Hz ≡ 0, Ez ≡ 0. We represent the desired 
solution as a superposition of the E- and H-waves in the form:  
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(4.1.10)

  

where A'E and A'H are the amplitudes of the E- and H-waves, respectively.  
We write the components of the vector p = (α, β, γ) representing the direction of 

the wave, in terms of angles θ and f of the spherical coordinate system:  

	 α ε φ θ β ε φ θ γ ε θ== cos sin , = sin sin , cos , 	 (4.1.11)  

where θ is the angle between the vector p and the axis Oz, f is the angle between 
the plane of incidence and the plane xOz. For these angles, the following relations:  
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(4.1.12)

  

We write separately the y- and x-components of the electric and magnetic fields:  
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where R is the rotation matrix of the form:  
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To describe the polarization of the wave, we introduce an angle ψ – the angle 
between the vector E and the plane of incidence. By the plane of incidence we mean 
the plane containing the vector of direction of the wave p and the axis Oz. In this 
case,  

	 ψ ψ′ ′= sin ,  = cos .H EA A A A 	 (4.1.15)  

Note that in solving the problem of diffraction the case f = 0 corresponds to 
the so-called flat incidence. In this case, the E-waves are called waves with TM- 
polarization, and the H-waves – waves with TE-polarization.  

To characterize the energy carried by the wave, it is convenient to normalize 
the coefficients A'E and A'H. We compute the z-component of the Poynting vector 
corresponding to the energy flux through the plane xOy. For the E-wave  
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(4.1.16)

  

for the H-wave  
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(4.1.17)

  

We redefine the expressions for the amplitudes in the form of:  

	

1= ,
cos

E EA A
ε ε θ

′

	

(4.1.18)

 

	

1= .
cos

H HA A
ε θ

′

	

(4.1.19)
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In this case, the values |AE|2 and |AH|2 correspond to the energy flux through the 
plane xOy. Such a normalization is useful for monitoring the law of conservation 
of energy in solving the problem of diffraction on diffraction structures of a non-
absorbing material.  

4.1.2. The method of rigorous coupled-wave analysis in the two-
dimensional case
  
The method of rigorous coupled-wave analysis used to solve the problem of 
diffraction on periodic diffraction structures consisting of a set of layers [1–13]. In 
each layer, the dielectric and magnetic permeabilities of materials of the structure 
are constant in the direction normal to the layer (along the axis Oz). The method 
is based on the representation of the field in the layers of the structure in the form 
of segments of Fourier series and on subsequent equating of the tangential field 
components at the boundaries between the layers. This reduces the solution of the 
problem to solving a system of linear equations [1–13].  

In this section we consider the method for two-dimensional gratings. In the two-
dimensional case, the material properties of the structure are constant along the 
axis Oy. The materials of the structure are given in general terms by the tensors of 
dielectric permittivity and magnetic permeability. 

 
4.1.2.1 The geometry of the structure and formulation of the problem  

Let us consider a grating with a period Λ along the axis (Fig. 4.1.1). For gratings 
with a continuous profile (dashed line in Fig. 4.1.1.) the method assumes the 
approximation of the profile of the grating by a set of binary layers. We assume 
that the diffractive grating consists of L binary layers (Fig. 4.1.1). The dielectric 
permittivity ε and magnetic permeability μ of the layers depend only on the variable 
x. The boundaries of the layers are the lines z = di, the i-th layer is located in the 
range di < z < di–1.  

Above this structure in the range z > d0 = 0 there is a homogeneous dielectric with 
a refractive index 1 1n ε= . Under the structure at z < dL there is a homogeneous 
dielectric with a refractive index 2 2n ε= .  

Fig. 4.1.1. Geometry of the problem of diffraction on a two-dimensional grating.
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On top of the grating there is a plane monochromatic wave (wavelength λ), 
whose direction is given by the angles θ and f in a spherical coordinate system 
(Fig. 4.1.1). The polarization of the wave is determined by the angle ψ between the 
plane of incidence and the vector E (see (4.1.15)).  

The solution to the problem of diffraction of light on a periodic structure is to 
calculate the intensity or complex amplitudes of the diffraction orders. Diffraction 
orders are the reflected and transmitted plane waves arising from the diffraction of 
the incident wave on the structure. There are reflected orders with amplitudes Ri, 
i = 0, ±1, ±2,...and transmitted??? orders with amplitudes Ti, i = 0, ±1, ±2,... (Fig. 
4.1.1). The diffraction orders are also separated into damped and propagating. The 
amplitude of the damped orders decreases exponentially with distance from the 
grating.  

4.1.2.2. Presentation of the field above and below the structure  

The field above and below the structure is written as a superposition of plane waves 
(Rayleigh expansion). According to (4.1.5), (4.1.10), we represent the plane wave 
by the vector of six components:  

	
= .  
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(4.1.20)

  

The incident wave equation has the form:  
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(4.1.21)

  

where    notation ΦI (ψ)   indicates   the   dependence    of    the     
incident    wave  on polarization  (see (4.1.15)).  Constants kx,0 = 
k0n1sinθcosf, ky=k0n1sinθcosf, 2 2 2

, ,0 0 ,0( )z I l x yk k n k k= − −  in (4.1.21) 
are defined by the angles θ and f representing the directions  
of the waves.  

The field above the grid corresponds to a superposition of the incident wave and 
the reflected diffraction orders:  
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where Φ(R) = ΦERE+ΦHRH.  The expression for Φ(R) corresponds to the repre-
sentation (4.1.10) of the reflected wave as the sum of E- and H-waves with complex 
amplitudes RE and RH, respectively.  

The field below the grating can be written similarly, in the form of a superposition 
of transmitted waves (diffraction orders):  
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CORRECT
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Directions of orders in (4.1.22), (4.1.23) are given by the values kx,i, ky, kz,I,i, kz,II,i ​​
that are called propagation constants and have the form:  
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− −
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(4.1.24)

  

where the index l is taken to be unity for the field over the grating and 2 – for the 
field under it. The submitted expression for kx,i follows from the Bloch–Floquet 
theorem [16, 17]. From a physical point of view the form of kx,i ensures that the 
so-called quasi-periodicity conditions  

	
( ),0( , , ) = ( , , ) exp , 1,2.+ Λ Λ =l l

xx y z x y z ik lΦ Φ
	

(4.1.25)
  

is fulfilled. 
According to (4.1.25), the amplitude of the field does not change with the shift 

in the period. The waves with real kz,I,i are propagating, with imaginary – damped.  

4.1.2.3. The system of differential equations to describe the field inside the 
layer  

Let us now consider the field inside the single l-th layer. For simplicity, we omit the 
index l.  

The field in each layer is described by the basic Maxwell equations for a 
monochromatic field in the form of:  
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where ,
 

ε µ in general are tensors:  
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The tensor components depend only on the coordinate x. Expanding the operator 
of the rotor (4.1.26), we obtain:  
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We represent the components of the electric and magnetic fields in the form of 
Fourier series in the variable x:  
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(4.1.29)

  

Representations (4.1.29) are written taking into account quasi-periodic 
components of the variable x. We confine ourselves to the finite number of terms 
in the expansions (4.1.29) correspond to –N <   < N. We form from the quantities 

,x jS , ,y jS , ,z jS , ,x jU , ,y jU , ,z jU  column vectors xS , yS , zS , xU , yU , zU  
containing 2N+1 elements.  

Consider the Fourier series expansion of the product of two functions ???εa(x)
Eb(x,y,z)???:  
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We restrict ourselves in (1.4.30) by a finite number of terms in the expansion at 
–N < j < N and in the following expression:  
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Substituting (4.1.29) into (1.4.28) and equating the coefficients of equal Fourier 
harmonics, we obtain:  
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(4.1.33)

  

where ,

0 0
= , =diag diagx j y

x y
j j

k k
k k

K K  the diagonal matricess, and , ,i j i jε=E  

 

 

 and  
 

, ,i j i jµ=M  

 

 

 is the Toeplitz matrix of the form (4.1.32), consisting of the expansion 
coefficients in the Fourier series of functions εi,i(x) and µi,j(x).  

We make the change of variables z' = k0z and transform the system (4.1.33) to 
the form:  



	 11

	

1,1 1,2 1,3

2,1 2,2 2,3

1,1 1,2 1,3

2,1 2,2 2,3

3,3 3,1 3,2

3,3 3,1

= ,

= ,

= ,

= ,

= ,

=

y
x y z y z

x
x y z x z

y
x y z y z

x
x y z x z

z x y y x x y

z x y y x x

d
i

dz
d

i
dz
d

i
dz

d
i

dz
i i

i i

− + + −
′

− − − − −
′

− + + −
′

− − − − −
′

− − −

− −

S
M U M U M U K S

S
M U M U M U K S

U
E S E S E S K U

U
E S E S E S K U

E S K U K U E S E S

M U K S K S M U 3,2 .y
















− M U
	

(4.1.34)

  

We rewrite the first four equations of the system in matrix form:  

	

1,31,2 1,1

2,2 2,1 2,3

1,2 1,1 1,3

2,2 2,1 2,3

= .

yy y

x zx x

y zy y

xx x

i

id
idz
i

−     
     − − − −       − −        −′       

− −      − −       

K MS S0 0 M M
0 0 M M K M SS S

E E 0 0 E K UU U
E E 0 0 E KU U

	
(4.1.35)  

We express in the last two equations (1.4.34) Sz and Uz, and substitute these 
expressions into (1.4.35). The result is a system of linear differential equations x- 
and y-Fourier components of the fields:  

	
= ,

y y

x x

y y

x x

d
dz

   
   
   
   ′
   
      

S S

S S
A

U U

U U
	

(4.1.36)

  

where  

	

1,3
1

3,2 3,12,3 3,3
1

1,3 3,2 3,13,3

2,3

= ,

y

x yx

y x y

x

i
i ii

i i i
i

−

−

− 
    −    −   − −      
  

K M
E E K KK M E 0

A J
E K K K M M0 M

E K
	
(4.1.37)  

where  

	

1,2 1,1

2,2 2,1

1,2 1,1

2,2 2,1

= .

 
 − − −  
 
− −  

0 0 M M
0 0 M M

J
E E 0 0
E E 0 0

	

(4.1.38)
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Thus, we obtain a system of linear first order differential equations for the vectors 
Sx, Sy, Ux, Uy. Note that the matrix A has the dimension 4(2 1) 4(2 1)N N+ × + .  

Correct rules of Fourier-expansion of the product of functions 
Formulation of the system of differential equations (4.1.36) was founded on the 
notion in (4.1.28) of the components of electromagnetic fields and the components 
of the tensor of dielectric and magnetic permeability in the form of segments of 
Fourier series. Fourier series representation of products of functions in (1.4.28) has 
its own peculiarities. The formulas (1.4.30)–(1.4.32) are of limited use.  

Consider two periodic functions  

	
( ) ( ) 2( ) exp , ( ) exp ,m m

m m

f x f iKmx g x g iKmx K π
= = =

Λ∑ ∑
	

(4.1.39)
  

and the Fourier series expansion of their product  

	
( )( ) ( ) ( ) exp .m

m

h x f x g x h iKmx= = ∑ 	
(4.1.40)

 

As a product of the Fourier coefficients of the standard values ​​we use  

	
,

N

j j m m
m N

h f g−
=−

= ∑
	

(4.1.41)
  

obtained by direct multiplication of the series (4.1.39), (1.4.40).Equation (1.4.41) 
to compute the Fourier coefficients of the rule is called the Laurent rule. In matrix 
notation (1.4.41) can be written as [5]  

	
[ ] = [[ ]][ ],h f g

	
(4.1.42)

  

where, as in (1.4.31), the square brackets denote the vectors consisting of Fourier 
coefficients of expansion of functions, and [[f]] is the Toeplitz matrix of the Fourier 
coefficients.  

As shown in [5, 6], the use of (1.4.42) is correct if there are no values ​​of x 
for which the functions f(x) and g(x) become discontinuos at the same time. Using 
the Laurent rules (4.1.42) for the product of functions with coincident points of 
discontinuity leads to disruption of the convergence of Fourier series at the points 
of discontinuity.  

If the functions f(x) and g(x) are discontinuous at the same time, but the function 
h(x) = f(x)g(x) is continuous, it is correct to use of the so-called inverse Laurent rule 
[5]  

	

1
1[ ] = [ ].h g
f

−
 

 

 

 

  	
(4.1.43)

  

In the  products μi,1(x)·Hx(x, y, z) and εi,1(x)·Ex(x, y, z)   in (4.1.28) both decomposed 
functions have discontinuities at the same points x corresponding to the vertical 
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boundaries of the media in the layers. Accordingly, the use of the Laurent  rules 
(4.1.30)–(4.1.32) when writing (4.1.33) is erroneous. Errors in the use of the Laurent 
are large when working with diffraction gratings of conductive materials.   In 
particular, the erroneous use of the Laurent rule leads to slow convergence of solutions 
for binary metal gratings for the case of TM-polarization [5–10]. Convergence in 
this case refers to the stabilization of the results of calculation of the amplitudes 
of the diffraction orders with increasing number of Fourier harmonics N in the 
representation of the field components (4.1.29).  

Continuous components at the vertical boundaries of the media are the tangential 
components Ey¸ Ez, Hy, Hz and normal components of electric displacement and 
magnetic induction Dx, Bx.  We express the discontinuous components by the 
continuous field components  

	

1312

11 11 11

1312

11 11 11

1 ,

1

x x y z

x x y z

E D E E

H B H H

εε
ε ε ε

µµ
µ µ µ

= − −

= − −
	

(4.1.44)

  

and substitute into Maxwell‘s equations (4.1.28). As a result, we obtain:  

	

0

2,1 1,2 1,3
0 2,2 2,1 2,3 2,1

1,1 1,1 1,1

3,1 1,2 1,3
0 3,2 3,1 3,3 3,1

1,1 1,1 1,1

= ,

= ,

= ,

yz
x

zx
x y z

y x
x y z

EE
ik B

y z

EE
ik B H H

z x

E E
ik B H H

x y

H

µ µ µ
µ µ µ µ

µ µ µ

µ µ µ
µ µ µ µ

µ µ µ

∂∂
−

∂ ∂

    ∂∂
 − + − + −       ∂ ∂     
    ∂ ∂
 − + − + −       ∂ ∂     

∂
0

2,1 1,2 1,3
0 2,2 2,1 2,3 2,1

1,1 1,1 1,1

3,1 1,2 1,3
0 3,2 3,1 3,3 3,1

1,1 1,1 1,1

= ,

= ,

= .

yz
x

zx
x y z

y x
x y z

H
ik D

y z

HH
ik D E E

z x

H H
ik D E E

x y

ε ε ε
ε ε ε ε

ε ε ε

ε ε ε
ε ε ε ε

ε ε ε



∂
− −

∂ ∂

    ∂∂
 − − + − + −       ∂ ∂     
    ∂ ∂
 − − + − + −       ∂ ∂     




















 	

(4.1.45)  

Equations (1.4.45) do not contain products of functions showing discontinuties 
at the same time. Accordingly, in the transition to the space-frequency domain we 
can use the direct Laurent rule (4.1.31), (4.1.32). According to (4.1.44), the vectors 
of the Fourier coefficients of the functions Dx, Bx have the form  



14	

	

1
1312

11 11 11

1
1312

11 11 11

1 ,

1 .

x x y z

x x y z

D E E E

B H H H

εε
ε ε ε

µµ
µ µ µ

−

−

 
   = + +           

 

 
   = + +           

 

     

     

     

     

     

     

     

     

     

      	

(4.1.46)

  

Performing in (1.4.45) the transition to the space–frequency domain and 
performing transformations, we obtain a system of differential equations (1.4.36) - 
(4.1.38), where the matrices Mi,j and Ei,j have the form:  

	

1 1 1
1312

1,1 1,2 1,3
11 11 11 11 11

1 1
21 12 21 21 12

2,1 2,2 22
11 11 11 11 11

1 1 1= , , ,

1 1,

µµ
µ µ µ µ µ

µ µ µ µ µ
µ

µ µ µ µ µ

− − −

− −

= =

= = − +

M M M

M M

         

         

         

         

         

       

       

       

       

        11
1

13 21 1321
2,3 23

11 11 11 11
1 1

31 31 12 31 12
3,1 3,2 32

11 11 11 11 11 11

,

1 ,

1 1,

µ

µ µ µµ
µ

µ µ µ µ

µ µ µ µ µ
µ

µ µ µ µ µ µ

−

− −

= − +

= = − +

M

M M

 

 

 

 

 

      

      

      

      

      

        

        

       

       

        

1
31 13 31 13

3,3 33
11 11 11 11

1 1 1
1312

1,1 1,2 1,3
11 11 11 11 11

21
2,1

11

,

1 ,

1 1 1, , ,

µ µ µ µ
µ

µ µ µ µ

εε
ε ε ε ε ε

ε
ε

−

− − −

= − +

= = =

=

M

E E E

E





 

 



      

      

      

      

      

         

         

         

         

         











1 1
12 21 21 12

2,2 22
11 11 11 11 11

1
13 21 1321

2,3 23
11 11 11 11

31
3,1

11

1 1, ,

1 ,

1

ε ε ε ε
ε

ε ε ε ε ε

ε ε εε
ε

ε ε ε ε

ε
ε

− −

−

= − +

= − +

=

E

E

E

        

        

        

        

        

      

      

      

      

      

 

 

 

 

 

1 1
31 12 31 12

3,2 32
11 11 11 11 11

1
31 13 31 13

3,3 33
11 11 11 11

1, ,

1 .

ε ε ε ε
ε

ε ε ε ε ε

ε ε ε ε
ε

ε ε ε ε

− −

−

= − +

= − +

E

E

        

        

        

        

        

      

      

      

      

       	
(4.1.47)  

The system of the differential equations (1.4.36) with the matrices Mi,j, Ei,j in the 
form of (1.4.47) is called a system, obtained using the correct rules of the Fourier 
expansions for the products of functions.  
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Form of the matrix of the system at different dielectric permittivity tensors 
We consider some special types of dielectric tensors and the corresponding matrices 
of the system of differential equations (4.1.36)–(1.4.38). The systems of differential 
equations are given for the case of correct rules for Fourier expansions.  

Consider the case of an isotropic material. For an isotropic material μ = 1, and ε 
are scalars. In this case the Ei,j, Mi,j matrices take the following form:  

	

1
*

1,1 2,2 3,3

1,2 1,3 2,1 2,3 3,1 3,2

1,1 2,2 3,3

1,2 1,3 2,1 2,3 3,1 3,2

1 , = = ,

= = = = = = ,

= = = ,

= = = = = = ,

ε
ε

−

= = =E E E E E

E E E E E E 0
M M M I
M M M M M M 0

 

 
 

 
 

 

	

(4.1.48)

  

where I is the identity matrix of dimension (2N+1)×(2N+1). Substituting (4.1.48) 
into (4.1.37)–(4.1.38), we obtain a matrix of the system of differential equations in 
the form of:  

	

1 1

1 1

* 2

2

= .

y x y y

x x x y

y x y

x x y

− −

− −

 −
 
 − −
 −
 −
 
 − − 

0 0 K E K I K E K

0 0 K E K I K E K
A

K K E K 0 0

K E K K 0 0
	

(4.1.49)

  

Consider the case of plane incidence, where ky = 0 (f = 0) as in (4.1.24) and the 
vector of direction of the incident wave vector lies in the plane XOZ. In this case 
Ky = 0 in (1.4.49) and the system of differential equations (1.4.36) splits into two 
independent systems 

	

*

1

2

= , ,

= , .

y yTM TM

x x x x

y yTE TE

x x x

d
dz

d
dz

−

    
= −     ′ −         

    
= −     ′ −          

U U 0 E
A A

S S K E K I 0

0 IS S
A A

U U K E 0 	

(4.1.50)

  

In the case of plane incidence this result allows to reduce the solution of the 
diffraction problem to two independent problems of diffraction of waves with TM- 
and TE-polarization.  

In section 4.3 we study structures containing layers of a magnetized material. For 
the magnetized materials the permittivity is given by the tensor [18, 19]:  

	

cos sin sin
cos sin cos

sin sin sin cos

M M M

M M M

M M M M

ig ig
ig ig

ig ig

ε θ θ φ
θ ε θ φ

θ φ θ φ ε

− 
 = − 
 − 



ε

	

(4.1.51)
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where ε is the main dielectric constant of the medium, g is the modulus of the 
gyration vector of the medium, proportional to the magnetization [18, 19], θM 
and fM are the spherical coordinates describing the direction of the magnetization 
vector. In the optical range μ = 1.  

We consider three basic cases, corresponding to the direction of the magnetization 
vector in three coordinate axes.  

At vertical magnetization (magnetization vector perpendicular to the plane of the 
layers of the structure) θM  = 0 and tensor (1.4.51) takes the form:  

	

ε
ε

ε

 
 = − 
  



0
0 .

0 0

ig
igε

	

(4.1.52)

  

In this case,  

	

1 1

1 1

* * 2

2 *
2

= ,

y x y y

x x x y

y x y

x x y

i

i

− −

− −

 −
 
 − −
 −
 + −
 
 − − 

0 0 K E K I K E K

0 0 K E K I K E K
A

E H K K E K 0 0

K E HE K K 0 0
	

(4.1.53)  

where 
1 2

* *
2

1 , , ,g gε ε
ε ε ε

−

= = = = − +E E H E HE H
 

   

 

   
 

 

 
   

 

   

 

	 .   

For horizontal magnetization (magnetization vector is parallel to the layer plane 
and directed along the axis Ox) =

2M
πθ , M = 0 , and tensor (1.4.51) takes the form  

	

ε
ε

ε

 
 =  
 − 



0 0
0 .
0

ig
ig

ε

	

(4.1.54)

  

In the case of (4.1.54), the matrix of the system takes the form  

	

1 1 1

1 1 1

* 2

1 2 1 1

= ,

y y x y y

x x x x y

y x y

x x y x yK

− − −

− − −

− − −

 −
 
 − −
 −
 −
 
 + − − − 

K E G 0 K E K I K E K

K E G 0 K E K I K E K
A

K K E K 0 0

GE G K E K K GE GE K
	

(4.1.55)  

where G = [[g]].  
At the direction of the magnetization vector along the axis Oy = =

2M M
πθ ϕ . In 

this case from (1.4.51) we get:  
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ε
ε

ε

 
 =  
 − 



0
0 0 .

0

ig

ig
ε

	

(4.1.56)

  

For the tensor (4.1.56), the matrix of the system takes the form  

	

1 * 1 1
2 2 2

1 * 1 1
2 2 2

* 2 * 1 * * 1 * 1
2 2 2

2

= .

y y x y y

x x x x y

y x y x y

x x y

− − −

− − −

− − −

 −
 
 − −
 −
 − − −
 
 − − 

0 K E HE K E K I K E K

0 K E HE K E K I K E K
A

K K E K E HE HE E HE K E HE K

K E K K 0 0 	  
(4.1.57)  

where 
2

2 *gε
ε

  
= − +  

   
E HE H .

  
4.1.2.4. Presentation of the field inside the layer  

To directly view the field in the layer, we examine the natural decomposition of the 
matrix:  

	
1= ,−A W WΛ 	 (4.1.58)  

where diag i
i

λΛ = is  the  diagonal matrix of  the eigenvalues of the  matrix  A,   

and W  is  the   matrix  of eigenvectors. Then the solution of systems of differential 

equations (1.4.36) can be written as: 

	

( ) ( ) ( )0 0= exp = exp = exp .λ

 
 
  ′ ′ ′ ′ 
 
  

∑
y

x
i i i

y i

x

z k z c w k z

S

S
W C W C

U

U

Λ Λ

	

(4.1.59)

  

We split the last sum into two, depending on the sign of the real part λi and write 
the expression in matrix notation:  

	

( )

( ) ( )

( ) ( )

0

0 0 1
:Re <0 :Re >0

( ) ( ) ( ) ( ) ( ) ( )
0 0 1

exp

= exp ( ) exp ( ) =

= exp ( ) exp ( ) ,

λ λ

λ

λ λ −

− − − + + +
−

 
 
  ′= = 
 
  

− + −

− + −

∑

∑ ∑

y

x
i i i

y i

x

i i i l i i i l
i ii i

l l

c w k z

c w k z d c w k z d

k z d k z d

S

S
U

U

W C W CΛ Λ
	
(4.1.60)
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where Λ(+) and Λ(–) are the diagonal matrices of eigenvalues ​​whose real parts are 
positive and negative, respectively, W(+) and W(–) are the corresponding matrices 
of eigenvectors, C(–), C(+) are the vectors of arbitrary constants. The representation 
(1.4.60) is focused on computer calculation. The exponents in (4.1.60) always have 
a negative real part. This ensures that no overflow occurs.  

In some cases, the procedure to calculate the eigenvectors and eigenvalues ​​ 
can be greatly speeded up taking into account the special form of the matrix A 
[4]. In particular, the matrix A in (4.1.49), (4.1.50), (4.1.53) has the following block 
structure  

	

12

21
.

 
=  

 

0 A
A

A 0 	
(4.1.61)

  

We write for A the matrices of eigenvectors and eigenvalues ​​as  

	

11 12 11

21 22 22
, .

   
= =   

   

W W 0
W

W W 0
Λ

Λ
Λ

	
(4.1.62)

  

Since A = W Λ W–1, then 

	

12 11 12 11 12 11

21 21 22 21 22 22

12 21 12 22 11 11 12 22

21 11 21 12 21 11 22 22

,
       

⋅ = ⋅       
       

   
=   

   

0 A W W W W 0
A 0 W W W W 0

A W A W W W
A W A W W W

Λ
Λ

Λ Λ
Λ Λ

	

and we have  

	

12 21 11 12 21 11 11 11 11

12 21 12 12 22 22 12 22 22

,
.

= =
= =

A A W A W W
A A W A W W

Λ Λ Λ
Λ Λ Λ

	
(4.1.63)

  

We introduce the matrix B = A12 A21and represent (4.1.63) as  

	
2 2

11 11 11 12 12 22, .⋅ = ⋅ =B W W B W WΛ Λ 	 (4.1.64)  

According to (4.1.64) W11, Λ
2
11, W12, Λ

2
22 are the matrixces of eigenvectors and 

diagonal matrices of eigenvalues ​​of the same matrix B. So  

	
1

11 12 22 11 21 21 11 11 22 21,  and , .−= = − = = −W W W A W W WΛ Λ Λ 	 (4.1.65)  

The relations (1.4.65) determine the eigenvalues ​​and eigenvectors of the matrix 
A through the eigenvalues ​​and eigenvectors of the matrix B ​twice smaller in the 
form of:  

	
− −

  
= =   

− −     

11 11 11
1 1

21 11 11 21 11 11 11

0
, .

0

W W
W

A W A W
Λ

Λ
Λ Λ Λ

	
(4.1.66)
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In [4] it is noted that halving the dimension of the eigenvalue problem to 
eigenvalues is equivalent to reducing system (36) from 4(2N+1) first order 
differential equations to a system 2(2N + 1) of second order differential equations. 

 
4.1.2.5. ‘Stitching’ of the electromagnetic field on the layer boundaries
  
The general representation of the field in the layer was described above. To obtain 
a solution which satisfies the Maxwell equations, it is necessary to equate the 
tangential field components at the layer boundaries. Equating the tangential field 
components is equivalent to equating functions (4.1.60) with the meaning of the 
Fourier coefficients for each fixed z. We write the preliminary solutions (4.1.60) on 
the upper and lower boundaries of all layers. For convenience, we assume that the 
matrix of eigenvectors W is given by:  

	
( ) ( )= .− + 

 W W W
	

(4.1.67)
  

In addition, we introduce the vector of unknown constants C as follows:  

	

( )

( )
= .

−

+

 
 
  

C
C

C 	
(4.1.68)

  

Given this notation the solution of (4.1.60) on the upper and lower boundaries of 
the layer has the form  

	

−

−
− − − − + +

−

−

 
 

   +       
  

1
( )

1 ( ) ( ) ( ) ( ) ( )

1

1

( )

( )
= = = ,

( )

( )

y l

x l

y l

x l

d

d
d

d

S

S x 0W x C W C W C NC
U 0 I
U 	

(4.1.69)

 

	

− − + + +
+

 
 

   +       
  

( ) ( ) ( ) ( ) ( )
( )

( )

( )
= = = ,

( )

( )

y l

x l

y l

x l

d

d
d

d

S
I 0S

W C W x C W C MC
U 0 x
U 	

(4.1.70)

  

where  

	 ( )( ) ( )( )( ) ( ) ( ) ( )
0 1 0 1exp , exp .l l l lk d d k d d+ + − −

− −= − = −x xΛ Λ 	
(4.1.71)

  

Equating the tangential components at the interface between adjacent layers, we 
obtain the equation  

	 1 1 = , = 2, , ,i i i i i L− −M C N C  	 (4.1.72)  
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where the index i = 2 corresponds to the condition at the lower boundary of the 
upper layer, the index i = L – at the upper boundary of the lower layer.  

The relations (4.1.72) must be supplemented by the conditions of equality of 
the tangential components of the field above the structure (4.1.22) and at the upper 
boundary of the 1st layer, as well as of the field under the structure (1.4.23) and at 
the lower boundary of the L-th layer. Given the fact that in the layers of the field 
components are represented by segments of Fourier series of dimension 2N+1 in 
the representations in the fields above and below the grating (4.1.22)–(4.1.24) it is 
necessary to take 2N + 1 waves at –N < i < N. 

By adding these relations for the upper and lower boundaries of the diffraction 
structure, we obtain the following system of linear equations:  

	

1 1

1 1

= ,
= , = 2, , ,

= ,
i i i i

L L

i L− −

+





D P R N C
M C N C
M C F T



	

(4.1.73)

  

where R and T are the vectors of complex amplitudes of reflected and transmitted 
orders, respectively. These vectors have the form: 

	
= , = ,E E

H H

   
   
   

R T
R T

R T 	
(4.1.74)

 

RE and TE are the the vectors of complex amplitudes of E-waves, RH and TH are the 
vectors of complex amplitudes of H-waves.  

The vector D in (1.4.73) represents the incident wave and has the form:  

	

1 1

1 1

cos sin cos
cos cos sin

= cos sin ,
cos cos sin
sin cos cos

i i

i i

i i

i i

in in
in in

θ φ φ
θ φ φ

ψ ψ
φ θ φ

φ θ φ

⋅ ⋅   
   ⋅ − ⋅   +
   − ⋅ ⋅
   

⋅ ⋅   

D

δ δ
δ δ
δ δ

δ δ
	

(4.1.75)

  

where δi is a column vector, in which only one element in the middle is different 
from zero and unity. The column vector δi has the dimension 2N + 1, vector D – 
dimension 4(2 N+1).  

The matrixces P and F in (1.4.73) correspond to the reflected and transmitted 
orders, respectively, and have the form  

	

(1)
1

(1)
1

2 (1)
1 1
2 (1)
1 1

cos sin cos

cos cos sin
= ,

cos cos sin

sin cos cos

n

n

in in

in in

 −
 
− − 

 
− − 

 − 

P

Θ Φ Φ

Θ Φ Φ

Φ Θ Φ

Φ Θ Φ

	

(4.1.76)
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(2)
2

(2)
2

2 (2)
2 2
2 (2)
2 2

cos sin cos

cos cos sin
= ,

cos cos sin

sin cos cos

n

n

in in

in in

 −
 
− − 

 
− − 

 − 

F

Θ Φ Φ

Θ Φ Φ

Φ Θ Φ

Φ Θ Φ

	

(4.1.77)

  

where Φ , (1)Θ , (2)Θ are the diagonal matrices of angles corresponding to diffraction 
orders. They satisfy the following relations:  

	

,
2 2 2 2
, ,

sin , cos ,diag diagy x i

i ix i y x i y

k k

k k k k
= =

+ +
Φ Φ

	

(4.1.78)

 

	

, , , ,(1) (2)
2 2

0 1 0 2
cos , cos .diag diagz I i z II i

i i

k k
k n k n

−
= =Θ Θ

	
(4.1.79)

  

The expressions (1.4.75)–(4.1.77) follow directly from the general formulas 
(4.1.12), (4.1.13) for a plane wave taking into account the type of propagation 
constants of the orders (4.1.24).  

According to (1.4.73), the solution of the diffraction problem is reduced to 
solving a system of linear equations. Sequential exclusion of the coefficients Ci in 
(4.1.73) reduces the system (1.4.73) to a system of equations for the coefficients R 
and T. Indeed, from the last two equations in (4.1.73) we obtain  

	 1
1 1 .L L L L

−
− − =M C N M FT 	 (4.1.80)  

Substituting (1.4.80) into the equation with the index i = L – 1 in (4.1.73), we 
obtain  

	
1 1

2 2 1 1 .L L L L L L
− −

− − − −=M C N M N M F T 	 (4.1.81)  

Continuing this process to the equation with the index i = 2, we have  

	
1

1 1
2

.
L

i i
i

−

=

= ∏M C N M F T
	

(4.1.82)
  

Finally, substituting (1.4.82) in the first equation of (1.4.73), we obtain the 
desired system of linear equations for the coefficients R and T in the form of:  

	

1

1

.
L

i i
i

−

=

 
 + =
 
 
∏D P R N M F T

	
(4.1.83)

  

4.1.2.6. Numerical and steady implementation of the method 

Recording system in the form (4.1.83) can lead to a numerical instability of the 
problem [3]. Problems are associated with the calculation of the matrix  
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	 ( )
−

− −
−+ +

      = =         

1
1 1

1( ) ( )i i i
i i

I 0I 0
M W W

0 x 0 x
	

(4.1.84)
  

in (1.4.83). The diagonal matrix  

	
( ) ( )( )1( ) ( )

0 1exp i i ik d d
−+ +

−= − −x Λ
	

(4.1.85)
  

contains the exponents of the positive values ​​that can lead to overflow [3]. Consider 
the variant of writing a system of linear equations, avoiding computing the matrices 
(4.1.85). We denote  

	
( )= , = .L

LF F T T 	 (4.1.86)  

Given this notation, equation (1.4.83) takes the form  

	
1 ( )

1

.
L

L
i i L

i

−

=

 
 + =
 
 
∏D P R N M F T

	

(4.1.87)

  

Transform (1.4.87) to the equation  

	

1
1 ( 1)

1
1

,
L

L
i i L

i

−
− −

−
=

 
 + =
 
 
∏D P R N M F T

	

(4.1.88)

  

where  

	
( 1) 1 ( )

1 = .L L
L L L L

− −
−F T N M F T 	 (4.1.89)  

Equation (4.1.88) has the same form as (4.1.87), but contains one less 
factor. Substituting into (4.1.89) the concrete form of matrices NL and ML

–1, we get  

	

−−
− −

− +

  
  

      

1( )
( 1) 1 ( )

1 ( )= .L LL
L L L L

L

I 0x 0F T W W F T
0 x0 I 	

(4.1.90)
  

We introduce the notation  

	

( )
1

( )
= =L

L L L
L

−
−

+

 
 
  

A
A W F

A 	
(4.1.91)

  

and rewrite (4.1.90) to the form  

	 ( )
− −−−

−
−− + + +

     =             

( ) ( )1( )
( 1) ( ) ( )

11 ( ) ( ) ( )
= .

L LL L LL
L L L L

L L L

x AI 0x 0F T W A T W T
0 x0 I x A 	

(4.1.92)  
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In order to avoid possible overflows in the calculation of the matrix (xL
(+))–1, we 

draw the following substitution [3]  

	
( ) 1( ) ( ) ( ) ( 1)= .L L

L L
−+ + −T A X T

	
(4.1.93)

  

As a result, we obtain  

	

( )−− − + +
− −

−

 
 
 
 

1( ) ( ) ( ) ( )
( 1) ( 1)

1 = .L LL L L L
L L

x A A xF T W T
I 	

(4.1.94)

  

Thus, the original system (4.1.87) is reduced to the system (1.4.88) of the same 
species, but containing at least one factor less. The transition to the system (1.4.88) 
is numerically stable.  Numerical stability is achieved by replacing the variables 
(4.1.93).  

By repeating these steps and successively reducing the number of factors in 
(4.1.88), we obtain the system 

	
(0)

0= .+D P R F T 	 (4.1.95)  

The matrix F(0) in (1.4.95) can be calculated by successive application of 
recurrence relations  

	

( )− −− − + +
−

− +

   
   
     

1 ( )( ) ( ) ( ) ( )
1

1 ( )
= , =ii i i i

i i i i
i

Ax A A xF W W F
AI 	

(4.1.96)
  

with a decrease of the index i from L to 1.  The solution of systems of linear 
equations determines the complex amplitudes of the reflected orders R and vector 
T(0). The amplitudes of the ??? orders T = T(L) are determined through the consistent 
application of the formula (4.1.93):  

	
( ) ( ) ( )1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) (0)

1 1 1 1= = .L
L L L L

− − −+ + + + + +
− −⋅T T A X A X A X T

	
(4.1.97)

  

Note that the expressions (1.4.93)–(1.4.97) can be obtained in the present form 
only in the case where the number of eigenvalues of the matrix A ​​with positive and 
negative signs of the real parts is equal. Otherwise AL

(+), (1.4.91) will not be a square 
and then the inverse matrix (AL

(+))– cannot be used. In particular, the above condition 
for the eigenvalues ​​is always satisfied for gratings of a homogeneous material and 
gratings of a magnetic material with a dielectric tensor in the form (1.4.52). It can 
be shown that this condition is also satisfied when the diffraction structure contains  
homogeneous magnetic layers with the dielectric tensor in the form of (4.1.54), 
(4.1.56).  

CAPITAL X??
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4.1.2.7. Characteristics of diffraction orders
  
In the analysis of the field outside the near zone of the grating the researcher is 
usually not interested in the complex amplitudes (4.1.74) and the intensity of the 
reflected and transmitted propagating diffraction orders. The propagating orders are 
determined by the actual values ​​kz,I,i in (4.1.24).  The intensity of the diffraction 
orders is defined as the Umov–Pointing vector flux through the plane z = const, 
normalized to the flux of the incident wave [17]. Given the normalization (4.1.18) 
(4.1.19), the intensity of the orders can be found from the following expressions:  

	

( ) ( )θ
+

Θ(1)
2 2

1

cosRe
= | | | | ,

cos
R

E HnI R R

	

(4.1.98)

  

	

( ) ( )θ
+

Θ(2)
2 2 2

2
1

cosRe
= | | | | ,

cos
T

E H

n
n

n
I T T

	

(4.1.99)

  

where the diagonal matrices (1) (2)cos , cosΘ Θ are defined in (1.4.79), and the squaring 
of the vectors , , ,E H E HR R T T  is element-wise. For the ???decreasing???diffraction 
orders ( )( )Re cos 0, 1,2l l= =Θ , respectively, their intensities are equal to zero.  

In general, the propagating diffraction orders are plane waves with elliptical 
polarization. Indeed, each diffraction order corresponds to the superposition of the 
E- and H-waves.  We denote by EE, EH the complex amplitudes of electric field 
vectors in the E- and H-waves.  Note that the electric field vector of the E- and 
H-waves are perpendicular to each other and perpendicular to the direction of 
wave propagation. With the addition of perpendicular oscillations an elliptically 
polarized wave forms in a general case. The polarization ellipse is characterized 
by two parameters: the angle φ of the main axis of the polarization ellipse and the 
ellipticity parameter χ [20]. The ellipticity parameter is the ratio of the lengths a, 
b of the axes of the polarization ellipse in the form tg χ = a/b. The parameters are 
determined by the complex amplitudes EE, EH  of the form [20]  

	

( ) ( )

( ) ( )

ϕ

χ

−

=
+

2

2
H

2 Re
tg 2 = ,

1

2 Im
sin 2 .

1 E

E H

E H

E H

E

E E

E E

E E

E 	
(4.1.100)

  

In conclusion, let us make some remarks on the choice of the parameter N that 
determines the length of the segments of the Fourier series approximating the 
components of the electric and magnetic fields in the zone of the grating. For a given 
N the number of calculated orders is equal to 2N + 1, from –N to +N. The parameter 
N must be greater than the number of propagating orders.  If the grating consists 
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of dielectrics only (all refractive indices are real numbers), and the parameter N 
satisfies the above condition, then the energy conservation law in the following 
form should be satisfied:  

	
= 1.R TI I+∑ ∑ 	

(4.1.101)
  

However, if the grating contains absorbing materials, the sum (4.1.101) should be 
less than unity. In general, the choice of N is made in the computational experiment 
from the conditions for stabilization of the values ​​of the intensities of the orders.  

4.1.3. Methods of Fourier modes in a three-dimensional case 
Consider the described method for the case of three-dimensional periodic diffraction 
structures. The z axis is directed perpendicular to the plane of the grating. The 
functions of dielectric and magnetic permeabilities of the gratin are assumed to be 
periodic with respect to variables x, y, and with periods Λ x and Λy, respectively. As 
in the planar case, we assume that the grating consists of L binary layers, and the 
dielectric permittivity and magnetic permeability in each layer does not depend on 
the variable z.                                                                                                     	
     A method of solving the diffraction problem in three-dimensional case is similar 
to the considered two-dimensional case. Here are the main features of the three-
dimensional problem. 

   In the diffraction of a plane wave in a three-dimensional diffraction grating formed 
by two-dimensional set of reflected and transmitted diffraction orders. In this case, 
the field above and below the structure is as follows:  

	 ( ) ( )1
, , , , , , ,( , , ) = ( , , ) exp ( ) ,I R

n m n m x n y m z I n m
n m

x y z x y z R i k x k y k z+ + +∑∑Φ Φ Φ 	
(4.1.102)  

	 ( ) ( )2
, , , , , , ,( , , ) = exp ( ( )) ,T

n m n m x n y m z II n m L
n m

x y z T i k x k y k z d+ − −∑∑Φ Φ 	
(4.1.103)  

where ( , , )I x y zΦ is the incident wave. We consider the incident wave given in the 
form (4.1.21). The propagation constants of the diffraction orders with the numbers 
(n, m) are described by the following expressions:  
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x n
x

y m
y

z l n m l x n y m

k k n n

k k n m

k k n k k 	

(4.1.104)

  

where the index l = 1 is for the reflected orders and l = 2 for the transmitted 
ones. The form of the propagation constants ensures fulfilling the two-dimensional 
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quasi-periodicity condition  

	 ( )1,2 1,2
,0 ,0( , , ) = ( , , ) exp .x y x x y yx y z x y z ik ik+ Λ + Λ Λ + ΛΦ Φ

	
(4.1.105)

  

According to (4.1.105), the amplitude of the field does not change with the shift 
to distances ???multiplicable by time periods???. The waves with the real kz,l,n,m are 
propagating, those with imaginary – damped.  

The type of an electromagnetic field in each layer, as in the two-dimensional 
case, is described the basic Maxwell equations for monochromatic fields in the form 
(4.1.26)–(1.4.29). We represent the components of the electric and magnetic fields 
in the form of two-dimensional Fourier series with respect to the variables x, y: 
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The equations (4.1.106) are written taking into account the quasi-periodicity 
of the components of the fields in the variables x, y.  We confine ourselves 
to the finite number of terms in the expansions (4.1.106), corresponding to 

,x x y yN n N N m N− ≤ ≤ − ≤ ≤ . Substituting (4.1.106) into the system (1.4.28) and 
equating the coefficients for the same Fourier harmonics, we obtain a system of 
differential equations in the form  
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The form of the resulting system is identical to that of the system (4.1.33) for the 
two-dimensional case. The difference lies in the particular representation of vectors 
and matrices in the system.The vectors ,xS ,yS ,zS ,xU ,yU zU  in (4.1.107) 
are progressive ??? of the matrices , , ,x j kS , , ,j kyS , , ,j kzS , , ,j kxU , , ,j kyU , , ,j kzU

,x xN j N− ≤ ≤ y yN k N− ≤ ≤ . This means that the element of the vector Sx with 
the number  

	 ( )( , ) 2 1 .yl i j i N j= + +
	

(4.1.108)
  

correspond to the value Sx,i,j. The vectors introduced in this way have the dimension 
(2  + 1) (2Ny + 1) equal to the total number of the calculated diffraction orders. For 
example, the vector Sx has the form: 

	 , , , ,1 , , ,1 , ,1 ,1 , ,, , , , , , , .
x y x y x y x y x y x y

T
x x N N x N N x N N x N N x N N x N NS S S S S S− − − − − − − − −

 =  
S

 

	

The matrices in , ,,, , i j i jx yK K E M  (4.1.107) have the dimension (2Nx+1)                       
(2Ny + 1)×(2Nx + 1) (2Ny + 1).  The matrice Kx and Ky are determined by the 
following expressions:  

	

, ( , ), ( , ) , 0

, ( , ), ( , ) , 0

= ,

= ,
x l i j l n m x i i n j m

y l i j l n m y j i n j m

K k k

K k k

δ δ

δ δ
− −

− − 	
(4.1.109)

  

where , , ,x x y yN i n N N j m N− ≤ ≤ − ≤ ≤ .
Consider the form of the matrices , ,,i j i jE M obtained by using the normal 

Laurent rules for the expansion into Fourier series of the products of functions.  The 
matrices , ,,i j i jE M  are composed of the Fourier coefficients of the tensors of 
dielectric permittivity and magnetic permeability, the structure of the matrices is ​​
the same and has the form 

	 ( , ), ( , ) ,= ,l i j l n m i n j mT e − − 	 (4.1.110) 

where ei,j are Fourier coefficients, , , ,x x y yN i n N N j m N− ≤ ≤ − ≤ ≤ ,  
Since the form of systems of differential equations in two- and three-dimensional 

cases is identical, then the same and all subsequent changes are also identical. The 
system of differential equations for the vectors xS , yS , xU , yU , in (4.1.107) has 
the form (1.4.36)–(4.1.38).  In particular, for the grating of an isotropic material, 
and when ε = (x, y) and µ = 1 are scalars, the matrix of the system of differential 
equations (4.1.36) has the form  

	

1 1

1 1
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y x y y
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(4.1.111)
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where the matrix E is ​​given by (4.1.109) and is composed of the Fourier coefficients 
of functions ε (x, y). Equation (4.1.111) can be obtained from the general expressions 
(1.4.37), (1.4.38) for  

	

1,1 2,2 3,3

1,2 1,3 2,1 2,3 3,1 3,2

1,1 2,2 3,3

1,2 1,3 2,1 2,3 3,1 3,2

= = = ,

= = = = = = ,

= = = ,

= = = = = = .

E E E E
E E E E E E 0
M M M I
M M M M M M 0 	

(4.1.112)

  

Consider the transition to the space–frequency representation (4.1.107), using 
the correct rules of Fourier expansions of the products of functions. Derivation of 
formulas will be carried out for the case of an isotropic material. The system of 
Maxwell’s equations (4.1.28) contains only the following three products: εEz, εEx, 
εEy.  

The tangential component Ez is continuous, and therefore the product εEz is 
expanded into a Fourier series with the Laurent rules (4.1.42).  In this case, the 
corresponding matrix E3,3 in (4.1.107) has the form (4.1.110).  

We assume that the boundaries of two media with different dielectric constants 
in each layer are parallel to the coordinate axes [6].  Consider the product Dx = 
εEx. The product Dx is continuous at the sections of the interfaces parallel to the axis 
Oy. Indeed, at these sites Dx = εEx is a normal component of electric displacement. At 
the same time, the component Ex and the function of the dielectric constant ε are 
discontinuous at these boundaries. Thus, the product Dx = εEx is continuous in x for 
any fixed y. Accordingly, for the expansion of Dx = εEx into the Fourier series in the 
variable x we used the inverse Laurent rule (4.1.43)  

	
( ) ( ) ( ), , ,, , ,x i x i n x n

n

d y z y S y zε= ∑
	

(4.1.113)
  

where ( ) ( ), ,, , ,x i x nd y z S y z  are the Fourier coefficients of the functions Dx, εEx, 
аnd εxi,n(y) are the elements of the Toeplitz matrix 11 xε −

 

 

formed from the Fourier 
coefficients with respect to variable x of the function 1/ε(x, y).  In sections of the 
boundaries of the media parallel to the axis Ox, the component Ex is tangential and 
therefore continuous in y. The Fourier coefficients ( ), ,x nS y z  of function Ex are also 
continuous. Therefore, for the expansion in (4.1.113) of terms ( ) ( ), , ,x i n x ny S y zε  
into a Fourier series in y we apply the Laurent rule (4.1.42)  

	
( ) ( ), , , , , ,

,

,x i j x i n j m x n m
n m

d z S zε −=∑
	

(4.1.114)
  

where , ,x i n j mε − are the Fourier coefficients with the number (j–m) of the function 
εxi,n(y).  

Repeating a similar argument for Dy = Ey, we obtain  
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( ) ( ) ( ), , ,, , ,y j y j m y m

m

d x z x S x zε= ∑
	

(4.1.115)
 

	
( ) ( ), , , , , ,

,

,y i j y i n j m y n m
n m
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(4.1.116)
  

where εyj, m(y) are the elements of the Toeplitz matrix 
1

1 yε
−

 

 

 

formed from the 
Fourier coefficients of the variable y of the function 1/ε(x, y), and εy i–n,j,m is the 
Fourier coefficient with the numbe (i–n) of the function εy j,m (x).  

Equations (4.1.114) and (4.1.116) were obtained using the correct rules of  
expansion into Fourier series of the products ,x x y yD E D Eε ε= = . Accordingly, 
in the transition from the system (1.4.28) to the space–frequency representation 
(4.1.107), the matrices E1,1 and E2,2 will have the form  
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l i n l j m x i n j m

l i n l j m y i n j m

E

E

ε

ε
−

−

=

= 	 (4.1.117)  

where l(i, j) is defined in (4.1.108), , , ,x x y yN i n N N j m N− ≤ ≤ − ≤ ≤  Matrices in 
(4.1.117) have dimension (2Nx+1) (2Ny + 1)×(2Nx + 1) (2Ny + 1)..  

As a result, the matrix A of the system of linear differential equations takes the 
form:  
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Detailed description of the correct rules of expansion into a Fourier series for the 
general case of the tensors of dielectric permittivity and magnetic permeability can 
be found in [8, 9].  

Subsequent operations on the ‘cross-linking’ of solutions at the layer boundaries 
and numerically stable implementation of the calculation of the matrix of the 
system of linear equations for the amplitudes of the diffraction orders are also the 
same. Matrices E, F in the systems of linear equations that represent the tangential 
field components (4.1.102), (4.1.103) on the upper and lower boundaries of the 
lattice also have the form (4.1.76), (4.1.77), where  
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( )
( , )

,diag
l i j

f i j  denotes the diagonal matrix composed of elements f (i,j),  
 
arranged in the ascending order of magnitude l(i,j).  

4.1.4. Examples of calculation of diffraction gratings  

The method of Fourier modes can be used to calculate a wide class of periodic 
structures, including beam splitters, polarizers, antireflection structures, etc. In this 
section we consider several typical examples of these devices.  

4.1.4.1. Gratings–polarizers 

Figure 4.1.2 shows the geometry of the grating–polarizer (period d), intended for 
the transmission of the component of the incident wave with TM-polarization 
and reflection of the component with TE-polarization. Such gratings are of great 
practical importance in systems for illumination of LCD monitors. 

The grating in Fig. 4.1.2 has the properties of the polarizer with at incidence  
of a wave when the projection of the vector of direction of the incident wave on 
the grating plane is parallel to the axis Oy (when f = π/2 in (4.1.24)). Figure 4.1.2 
schematically shows the directions of the incident wave in this geometry for the 
symmetric range of angles max max,θ θ θ∈ −   . 

Calculation of the geometric parameters of the structure in Fig.4.1.2 was carried 
out using a gradient optimization procedure [20] at the wavelength λ = 550 nm and 
the refractive index of materials n1 = 1.5, n2 = 1.72. In practice, the structure should 
have polarizing properties for a certain range of incidence angles θ θ θ∈ −  max max, .
Therefore, as the target function we select the following integral criterion  

	

( ) ( ) ( )( )
θ

θ

ε θ θ θ
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= − →∫
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(4.1.120)

  

Fig. 4.1.2. Geometry of the grating-polarizer 
geometry and incident wave.  
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where TTM(θ), TTE(θ) is the intensity of the transmitted zero diffraction orderes 
with incident waves with TM-polarization (H = (Hx, 0, 0), E = (0, Ey, Ez) and 
the TE-polarization (E = (Ex, 0, 0), H =(0, Hy, Hz)), respectively. The calculation 
TTM(θ), TTE(θ) in (4.1.120) is carried out by the method of Fourier modes. As a 
result, optimization at θmax = 2o yielded the following parameters: period d =                                                                                                                                                
482 nm, h1 = 205 nm, h2 = 285 nm, h3 = 998 nm, r = 233 nm. Figure 4.1.3 shows the 
calculated transmission of graphics structures, depending on the angle of incidence 
with the incident waves with TM polarization and the TE polarization.  Figure 
4.1.3 shows that the calculated structure in the required range of angles completely 
transmits the emission with TM-polarization.  The transmission for a wave with 
TE-polarization is zero at normal incidence and is less than 10% at θ∈[–2o, 2o].
When using the grating in Fig. 4.1.2a it is difficult to achieve good polarization 
properties at θmax > 2o.  The polarization properties in a large angular range can 
be achieved using a sandwich-type structure obtained by repeating the grating in 
Fig. 4.1.2a on the axis Oz. In this case the vertical periods of the sandwich structure 
are identical and have the form shown in Fig. 4.1.2.  

We calculated the structure containing four vertical periods for the interval of 
angles of incidence θ∈[–10o, 10o]. Optimization of the function (4.1.120) at θmax 
= 10o resulted in the following parameters: period d = 439 nm, h1 = 38 nm, h2 =                                                                                   
460 nm, r = 287 nm. Calculated transmission graphs for a structure with four 
vertical periods are shown in Fig. 4.1.4.  

Figure 4.1.4 shows that the calculated structure in the angular range                                          
θ∈[–10o, 10o] is the transmission coefficient for a wave with TM-polarization above 
97%. In this case the transmission for a wave with TE-polarization does not exceed 
10%, and at θ∈[–5o, 5o] it is less than 1.5%.  

4.1.4.2. The beam splitter 

Gratings are widely used as beam splitters.  |Binary diffraction gratings are the 
easiest to manufacture. The binary grating contains at period K rectangular lines 

Fig. 4.1.3.  The transmission of structure depending on the angle of incidence with the 
incident wave with TM-polarization (solid line) and TE-polarized (dashed line).
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of the same height but different widths (see Fig. 4.1.5). The task of calculating the 
beam splitter is formulated as the problem of calculating the coordinates of the 
profile lines x1,..., x2K and the height of the lines a is formulated from the conditions 
of formation of the given intensities of the diffraction orders. Depending on the type 
of grating (dielectric, metallic, or impermeable, reflecting) the profile is calculated 
from the condition of the formation of given intensities of reflected or transmitted 
diffraction orders [20].  

The method of Fourier modes was used for the calculation of binary dielectric 
gratings with equal intensity of transmitted 2  + 1 orders.  Order numbers are 
symmetrical, from –N to N.  Calculation of grating parameters p = (x1,..., x2K, a) was 
performed using the gradient optimization procedure [20] at the period d = 5.5 λ, 
at normal incidence of the wave (θ = 0) and at the refractive indices of the grating 
material and the substrate n =  1.5. The target function was the quadratic error 
function  

	
( ) ( )( )2

min,
N

T
j

j N

I Iε
=−

= − →∑p p

	
(4.1.121)

  

Fig. 4.1.4. The transmission of a structure with four vertical periods, depending on the angle 
of incidence with the incident wave with TM-polarization (solid line) and TE-polarization 
(dashed line)/  

Fig. 4.1.5. Geometry of a binary dielectric grating. 
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where I Tj (p) is the intensity of transmitted orders. The results of calculations of 
the gratings are given in Table 4.1.1 for TE- and TM-polarization of the incident 
wave. In the last two columns of the table there are the values ​​of energy efficiency  
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E I
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= ∑
	

(4.1.122)
  

and the standard error of formation of the given equal intensity of the orders  
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(4.1.123)

  

where ( )/ 2 1I E N= +  is the average intensity. The coordinates of the profile in 
Table 4.1.1 are normalized to the value of the period.  

The calculation results show the possibility of formation of 5–11 equal orders 
at the energy efficiency of 80–90% and a low rms error. Note that the methods of 
the scalar theory can not be used in the calculation of diffraction gratings with the 
specified period [20].  

Number of 
orders 
2N + 1

Number of lines

K

Height of lines

(a/λ)
Coordinates of 

the profile E, (%) δ (%)

TM-polarization
3 1 0.675 (0.283, 0.7719) 80.1 3.1

5 2 0.9 (0.1800, 0.4841), 
(0.5525, 0.8567) 80.1 3.1

7 2 0.885 (0.2392, 0.4447) 
(0.5919, 0.7974) 87.7 0.34

9 3 1.7
(0.1000, 0.1924) 
(0.3842, 0.4777) 
(0.6217, 0.7154)

94.6 1.6

11 3 1.61
(0.1542, 0.3454), 
(0.4858, 0.5729), 
(0.713, 0.9043)

94.4 6.9

TE-polarization
3 1 0.65 (0, 0.5) 85 0.005

5 2 0.9 (0.1832, 0.4785), 
(0.5579, 0.8535) 80.2 0.08

7 2 0.875 (0.2584, 0.4296), 
(0.6067, 0.7779) 83.8 0.7

9 3 1.0
(0.0117, 0.1945), 
(0.3198, 0.4838), 
(0.7819, 0.9545)

89.4 3.6

11 3 1.57
(0.0446, 0.3383), 
(0.5049, 0.556), 
(0.8268, 0.8779)

90.7 5.6

Table 4.1.1. The results of calculation of binary dielectric gratings in electromagnetic theory 
(d = 5.5λ, n = 1.5θ = 0)
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Three-dimensional binary diffraction gratings are used to generate the required 
two-dimensional set of diffraction orders. The method of Fourier modes was used  to 
calculate a three-dimensional binary dielectric grating to form nine equal intensity 
orders with numbers (i, j), i, j = –1, 0, 1.  In this case, it suffices to use a simple 
binary grating having a rectangular recess at one period (Fig. 4.1.6). Calculation 
of structural parameters was performed at a wavelength λ = 808 nm, equal periods                       
dx = dy = d = 2362 nm, the refraction index of the grating material gr 1.54n ε= =  
for the case of normally incident waves with the angle of polarization ψ =  45o. In 
this case, the electric vector of the incident wave coincides with the bisector of the 
1st quadrant. The geometrical parameters of the structure hgr = 1955 nm, wx = 0.9d 
were determined using the gradient optimization procedure. In the calculations it 
was assumed that the total thickness of the grating hgr + hl is 0.6 mm. 

The calculated values ​​of intensities of the orders of the grating at the given 
parameters are given in Table.  4.1.2.  Table 4.1.2 shows the high uniformity of 
intensity distribution in the orders, the mean square error of (4.1.123) is less than 
1%. The energy efficiency of the grating is 79.4%.  

4.1.4.3. Subwavelength antireflection coatings  

The method of Fourier modes was used for the calculation of binary subwavelength 
antireflection gratings. The term ‘subwavelength grating’ means that the grating 
has only zero reflected and transmitted propagating orders. The remaining orders 
correspond to evanescent waves. For the existence of only zero order at normal 
incidence, the periods of the grating must satisfy the condition λ ε<, / .x y grd d

Indices of orders (i, j) –1 0 +1
–1 0.0881 0.0885 0.0879

0 0.0885 0.0875 0.0885

+1 0.0879 0.0885 0.0881

Table 4.1.2. The intensity of the order of three-dimensional binary lattice

Fig. 4.1.6. Geometry of the dielectric binary grating  
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The antireflective coating was a simple binary grating with equal periods                                   
dx = dy = d, as shown in Fig. 4.1.6.  Calculations of the antireflective coating consisted 
of calculating the intensity of the zero reflected order IR

00 at different depths of the  
recess hgr and the size of the recess wx = wy = w for a fixed period d. The values hgr, 
w, ensuring minimum reflection IR

00 are also optimized grating parameters.  
The following parameters were chosen for calculations: λ = 10.6 µm, εgr = 5.76,   

d = 0.25 λ  =  2.65 µm. These values ​​of permittivity εs and wavelength correspond 
to the case of synthesis of the antireflective coating of ZnSe (zinc selenide) for a 
CO2 laser. The problem of synthesis of such coatings is especially important for 
high-power CO2 lasers. Figure 4.1.7 shows a graph of the function IR

00 (h, r, d) at 
h ∈ (0, 3.5) µm and w/d ∈ (0.1, 0.8). The calculation was performed for a normal 
incidence plane wave. The incident wave was represented by a superposition of E- 
and H-waves with equal coefficients. Such a representation simulates the case of 
unpolarized light.  

Figure 4.1.7 shows that at w/d ≈ 0.8 and hgr ≈ 1.8 µm there is a pronounced 
minimum reflection coefficient IR

00 (h, r, d).  Figure  4.1.8 shows a plot of the 
reflection coefficient IR

00 (h, r, d) at the optimal size of the reecess w = 0.8d and 

Fig. 4.1.7. The dependence of the reflection coefficient I00
R  on the depth h/λ ∈(0, 0.3) and the 

of the side of a square recess w/d ∈ (0.1, 0.8).  

Fig. 4.1.8. The dependence of the reflection coefficient  I00
R  on the depth (h/λ) at the optimum   

size of the side of the recess w/d = 0.8.
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different heights.  From the graph in Fig 4.18 one can see that the reflection 
coefficient decreases to zero at the depths 0.18λ, 0.49λ and 0.82λu. Thus, on a plane 
zinc selenide – air interface the reflection coefficient is approximately 17% 

Investigations were carried out into the possibility of using the simplest binary 
gratings (Fig. 4.1.6) as a a reflective coating for tungsten in the visible spectrum at 
λ = 0.55 µm. In this case, the dielectric constant is complex and λ = 0.55 µm εgr = 
4.8 +19.1li. The graph of the reflection coefficient IR

00 (h, r, d) for a tungsten binary 
grating with the period d = 0.85λ is shown in Fig. 4.1.9. Figure 4.1.9 shows that the 
minimum reflection coefficient is achieved when the size of the recess is w/d ≈ 0.75 
and depth hgr ≈ 0.35 .  

The graph of the reflection coefficient at the optimum size of the recess is shown 
in Fig. 4.1.10. The graph shows that the reflection coefficient for a plane tungsten–air 
boundary is close to 50%. With increasing depth the reflection coefficient decreases, 
reaching zero at depth hgr = 0.33λ. In contrast to dielectric gratings (Fig. 4.1.8), the 
secondary minima are not very pronounced. Figure 4.1.11 shows a graph for the 
reflection coefficient at the optimum size of the recess, depending on the wavelength 
range from 0.35 µm to 3.5 µm. The top graph in Fig. 4.1.11 shows the reflection 

Fig. 4.1.9. The dependence of the reflection coefficient of the depth h/λ ∈ (0, 0.4) and the 
size of the recess w/d ∈ (0, 1.0.9).

Fig. 4.1.10. Dependence of the reflection coefficient of the depth (h/λ) at the optimal size 
of the recess w/d = 0.75. 
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coefficient for a planar tungsten–air interface. Figure 4.1.11 shows the presence of a 
sharp minimum of the reflection coefficient near the calculated wavelength λ = 0.55 
µm. At the same time across the entire visible range the reflection coefficient for a 
binary grating is half the coefficient than for the planar interface. 

4.2. Formation of high-frequency interference patterns of 
surface electromagnetic waves by diffraction gratings  

Due to diffraction, the light can not be focused to a small spot. The minimu 
diameter of the spot is about half a wavelength. Thus, in the best diffraction-limited 
microscopy systems the maximum attainable resolution is of the order of hundreds 
of nanometers. Using the interference patterns of surface electromagnetic waves 
(SEW) we can achieve superresolution of about a tenth of a wavelength of the light 
used. 

In section 2.1 we derive the equations of SEW from Maxwell’s equations and 
examine the characteristics of the SEW. Section 2.1.3 examines the Kretschmann 
scheme for SEW excitation and the formation of interference patterns in the 
framework of the scheme.  

The paragraphs 2.2 and 2.3 discuss the formation of interference patterns of 
the SEW with a diffraction structure consisting of a dielectric diffraction grating 
(one- or two-dimensional) and a metal film placed under the grating in the region 
of the substrate [21–25]. Diffraction gratings are used for excitation at the lower 
surface of the metal film of a given set of SEW, which form an interference pattern. 
The excitation of SEW and the formation of interference patterns are carried out 
uisng higher diffraction orders (with numbers ±m, m > 1). This allows to generate 
high-frequency interference patterns with a period several times smaller than the 
wavelength of incident light with a low-frequency diffraction microrelief with a 
period several times greater than the wavelength of incident radiation [21-24]. These 
diffraction structures are used in surface plasmon interference nanolithography). In 
this case the interference pattern of SEW is recorded in the resist, which is located 
directly below the metal film and then the appropriate nano- or microstructure is 

Fig. 4.1.11. Dependence of the reflection coefficient on wavelength w/d = 0.75, hgr = 0.33 
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produced [26–30].  When using electron beam lithography for the production of 
a similar structure with a substantially subwavelength period the required sample 
screen size (resolution) should not be more than a quarter period of the interference 
pattern. Using the interference patterns of the SEW we can achieve resolution of a 
few tens of nanometers (about a tenth of a wavelength). 

Section 2.4 describes the integral representation of the electromagnetic field at 
the interface of two media through the angular spectrum of SEW and also describes 
the calculations of the diffraction structures for the transformation and focusing 
of the SEW. The calculation of the diffraction structures is based on the phase 
modulation of SEW, formed during the passage of a wave through the dielectric 
block, situated directly on the surface of propagation of SEW. The given phase 
modulation takes place both as a result of the variation of the height of the block 
above the surface at the fixed length and as a result of the change of the length of 
the block at the fixed height. The calculation of the ‘lens’ of surface electromagnetic 
waves is discussed as an example. 

4.2.1. Surface electromagnetic waves (SEW)
 
4.2.1.1. The equation of a surface electromagnetic wave 

Consider the derivation of the equation of the surface electromagnetic wave (SEW) 
at the interface between two semi-infinite media from Maxwell’s equations. Let the 
interface be the plane z = 0, with the media 1 and 2 corresponding to the regions                  
z > 0 and z < 0, respectively.  

We write a general representation of ​​the field in the media 1 and 2. The index of 
the number of the medium in the field components and dielectric constants will be 
introduced later, before applying the boundary conditions at the interface. Since the 
properties of the medium do not depend on the variables x, y, then the electric and 
magnetic fields in the media 1 and 2 have the form 

	

( ) ( ) ( )( )
( ) ( ) ( )( )

0

0

, , exp ,

, , exp ,

x y z z ik x y

x y z z ik x y

α β

α β

= +

= +

E E

H H
	

(4.2.124)
  

where k0 = 2π/λ, λ is the wavelength in vacuum. Substituting (4.2.1) into Maxwell‘s 
equations for a monochromatic field (4.1.3), we obtain:  
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(4.2.125)

  

We rewrite equation (4.2.125) in the form of  
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(4.2.126)
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(4.2.127)

  

where the components Ey and Hy satisfy the Helmholtz equation:  
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(4.2.128)

  

Solving (4.2.5), we obtain equations for the components Ey and Hy in the media 
1 and 2:  
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(4.2.129)

  

where  

	
2 2 2 ,i iγ α β ε= + − 	 (4.2.130)

index i = 1, 2 indicates the number of the medium, ei, hi are arbitrary 
constants. Representation of the field (4.2.6) corresponds to the SEW because it is 
fading in the direction z, perpendicular to the interface.  

Substituting (4.2.6) into (4.2.3) we get a second pair of tangential components 
Ex and Hx in the form  
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(4.2.131)  

We write the conditions of equality of the tangential components of electric and 
magnetic fields at the interface of the media at z = 0:  
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(4.2.132)

  

From the first two equations in (4.2.9) we obtain  

	 1 2 1 2, .e e h h= = 	 (4.2.133)  

Substituting (4.2.131), (4.2.133) into the second two equations of (4.2.9), we 
have:  
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1 2 2 1
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(4.2.134)

  

A non-trivial solution of (4.2.11) will exist when the determinant of system 
(4.2.11) is zero. Thus, we obtain  

	

2
2 21 2 1 1 2 2

2 2 2 2 2 2
1 2 1 2 1 2

1 1 0.
γ γ ε γ ε γ

α β
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(4.2.135)  
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A direct substitution shows that equation (4.2.12) becomes an identity when the 
following condition is fulfilled  

	
( )2 2 2 2 1 2

0 0
1 2

.k k
ε ε

α β
ε ε

+ =
+ 	

(4.2.136)
  

Equation (4.2.136) is the dispersion equation of SEW.  Under the condition 
(4.2.13) component Hz in (4.2.127) is identically zero. Thus, the vector H at the 
SEW is situated in the plane of the interface between two media.  

Direct analysis shows that the fields in the equations (4.2.6) and (4.2.8) have the 
damping form with respect to z under the condition Re (ε1 + ε2) < 0. This condition 
can occur at the interface between metal and dielectric. The dielectric constant of 
metals with high conductivity has a large negative real part and a small imaginary 
part, which ensures the fulfillment of the above conditions. For convenience, we 
replace the indices 1 and 2, denoting the number of the medium, by the indices m 
and d denoting the metal and the dielectric, respectively, and introduce the quantity  

	

ε ε
ε ε

=
+SPP 0 .m d

m d
k k

	
(4.2.137)

  

Quantity kSPP is called the constant of propagation of SEW and determines the 
projection of the wave vector of the SEW on the plane xOy.  

In a particular case β = 0 we obtain the SEW propagating along the axis Ox. In 
this case, equation (4.2.12) takes the form 

	
( )1 2

1 2
1 2

0,
γ γ

γ γ
ε ε

 
+ + = 

  	

which immediately yields the dispersion equation α =2 2 2
0 SPPk k . Note that at β = 0 

from (4.2.134) it follows that e1 = 0. Thus, from (4.2.129) and (4.2.131) we have:  

	
( ) ( ) ( )( ) ( ) ( )( ),0, , 0, ,0 , 1,2.i i i i i
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(4.2.138)
  

The expressions (4.2.138) show that the SEWs propagating along the axis Ox, 
are TM-polarized. 

It should be noted that the value kSPP is complex, since the dielectric constant εm 
is complex:  

	 .m m miε ε ε′ ′′= + 	 (4.2.139)  

Thus, the SEW decays also in the direction of propagation.  Note that since                                 
ε'm < 0 then the inequality  

	
1.m

m d

ε
ε ε

>
+

	
(4.2.140)
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is fulfilled. According to (4.2.140), we obtain  

	 ε>SPP 0.dk k 	 (4.2.141)  

Inequality (4.2.141) shows that for excitation of the SEW we can not use a plane 
wave incident on a medium with permittivity εd. SEWs are excited using special 
optical circuits containing a prism made of a material with higher dielectric constant 
or diffraction gratings.  

4.2.1.2. The properties of surface electromagnetic waves  

To characterize the SEW, we use quantities such as the wavelength, the propagation 
length, the depth of penetration into the dielectric and metallic media [31].  For 
convenience, kSPP  is presented in the form  

	 ′ ′′= +SPP SPP SPP ,k k ik 	 (4.2.142)  

where  k 'SPP and  k''SPP are the real and imaginary parts, respectively.  
The sections 2.2 and 2.3 of this chapter discuss the SEW on the border between 

silver and a dielectric with εd = 2.56. Accordingly, the characteristics of the SEW 
will be given for this pair of materials. The dependence of the dielectric constant of 
silver on the wavelength is shown in Fig. 4.2.1. At λ > 368 nm Re (εm) + εd < 0 and 
hence for such values ​​of wavelength the SEW can exist at the interface. 

The length of SEW is determined from the expressions  

	

ε ε
λ π λ

ε ε

 
′= =   + 

SPP SPP2 / / Re .m d

m d
k

	
(4.2.143)

  

In the case where the condition  

	 ,m d mε ε ε′ ′′+  	 (4.2.144)  

an approximate expression holds 

Fig. 4.2.1. The dependence of the dielectric constant of silver on the wavelength (the real 
part – solid line, imaginary part – dotted line).  

nm



	 43

	

ε ε
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(4.2.145)

  

In view of (4.2.145) we obtain an approximate expression for the length of SEW:  

	

ε ε
λ λ

ε ε
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≈
′SPP .m d
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The normalized length of the SEW is defined by  

	

λ ε ε
λ ε ε

 
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SPP 1 / Re .m d

m d 	
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When the condition (2.4.21) is fulfilled 

	

λ ε ε
λ ε ε

′ +
≈

′
SPP .m d

m d 	
(4.2.148)

  

Since ε'm < 0 then, according to (4.2.23), we obtain  

	 λ λ<SPP . 	 (4.2.149)  

This fact is the basis for the use of SEW in photolithography systems in the 
formation of nanostructures with subwavelength dimensions.  

Figure 4.2.2 shows the dependence of the real (solid line) and imaginary (dashed 
line) parts of the value kSPP/k0 on the wavelength, and Fig. 4.2.3 is the same graph for 
the normalized length of SEW. It is easy to see that the extrema of these quantities 
are obtained under the condition  

	 .m dε ε′ = − 	 (4.2.150)  

Condition (4.2.150) holds for λ ≈ 368 nm. The wavelength at which the condition 
(4.2.150) is fulfilled is called the resonance wavelength [28, 31]. Note that in the 

Fig. 4.2.2. The dependence of the normalized propagation constants of the SEW on the 
wavelength (the real part – solid line, imaginary part – dashed line). 

nm
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vicinity of the resonance wavelength the imaginary part of magnitude kSPP/k0 also 
increases. As shown below, this leads to a decrease in the length of distribution of 
the SEW.  

The SEW propagation length 

	
δ =

′′SPP
SPP

1 .
2k 	

(4.2.151)
  

is defined as the distance at which the intensity of the wave decreases e times. When 
the condition (4.4.144) is fulfilled, the approximate equality holds 
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(4.2.152)
  

Substituting (4.2.152) into (4.2.151), we obtain an approximate expression for 
the length of the SEW propagation in the form:  
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When the condition  

	 m dε ε′
 	 (4.2.154)  

is fulfilled, we can write a simple approximate expression for:  
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(4.2.155)

  

Equation (4.2.155) shows that the SEW propagation length is directly proportional 
to the real part and inversely proportional to the imaginary part of the permittivity 

Fig. 4.2.3. The dependence of the normalized length of the wavelength of the SEW.  

nm
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of the metal. Figure 4.2.4 shows the length distribution of the SEW (4.2.151) on the 
wavelength of light for the given pair of materials. The graph shows that when the 
value of the wavelength approaches the resonant value λ > 368 nm the propagation 
length tends to zero. The practical use of the SEW is impossible in the vicinity of 
the resonance wavelength.  

The penetration depth of the SEW into the medium is defined as the distance at 
which the wave amplitude decreases by e times.According to (4.2.129)–(4.2.131), 
(4.2.136), the damping of the SEW is determined by the  

	 γ ε= = −2 2
, 0 SPP 0 ,z l l lk k k k 	 (4.2.156)  

where the superscript l denotes the metallic (m) or dielectric (d) environment. The 
depth of penetration takes the form  

	
( ),1 Re .l z lkδ =

	 (4.2.157)  

When the condition (2.4.144) is fulfilled, the following approximate expressions 
hold:  
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(4.2.159)

  

These formulas for the penetration depths δd, δm are of practical importance, 
since they allow to determine the minimum thickness of material required for the 
excitation and existence of SEW. Figures 4.2.5 and 4.2.6 show the dependences of 
the depth of penetration of the SEW in the dielectric and the metal environment on 

Fig. 4.2.4. Dependence of the length distribution of the SEW on the wavelength.  

µm
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the wavelength. It is seen that for values ​​of the wavelength far from the resonance 
value, the penetration depth of SEW in the metal environment is similar to a constant 
value equal to 22 nm.  

4.2.1.3. Excitation of surface electromagnetic waves  

One of the most common schemes used for the formation of the SEW is the 
Kretschmann scheme [32–38]. The Kretschmann scheme includes a glass prism 
with a metal foil at the bottom (Fig. 4.2.7a). The film material is represented by 
good electrical conductors (silver, gold). At a certain angle of incidence of the wave 
with TM-polarization from the side of the prism SEWs are excited at the lower 
boundary of the metal film [32–38]. The diagram in Fig. 4.2.7a is described by the 
model of the three-layer medium in Fig.  4.2.7b. The dielectric constants 1–3 in 

Fig. 4.2.6.  The dependence of the penetration depth of SEW in the metal environment on 
the wavelength.  

Fig. 4.2.5.  The dependence of the penetration depth of SEW in a dielectric medium on the 
wavelength. 
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Fig. 4.2.7b correspond to the materials of the prism (εpr), the metal layer (εm) and 
the substrate (εd).  

SEW excitation occurs at an angle of incidence θ, defined by the condition of 
equality of the projection of the wave vector of the incident wave to the direction of 
propagation of SEW (axis Ox) to the propagation constant of SEW. This condition 
has the form  

	
( )ε θ= =,0 0 pr SPPsin Re .xk k k

	
(4.2.160)

  

Condition (4.2.160) is approximate. This is due to the fact that formula (4.2.137) 
defines the propagation constant of SEW for the boundary of semi-infinite media, 
and the metal film in Fig. 4.2.7 has a finite thickness. In practice, the film thickness 
is 40–50 nm. The error of determining the angle θ from the formula (4.2.160) is 
about 0.1o and in most practical problems is not essential. The exact definition of the 
angle θ is to solve the problem of diffraction of a plane wave with TM-polarization 
on a homogeneous metal layer.  The SEW excitation angle is determined by a 
sharp minimum that appears in the reflection spectrum of excitation of the SEW.  
Figure 4.2.8 shows a typical plot of the reflection coefficient R(θ) calculated with 
the following parameters: λ = 550 nm, h =  50 nm, εpr = 4,  εm = –12.922 + 0.447i 
(Ag), εd = 2.25. 

With these parameters, the surface wave excitation occurs at an angle of 
incidence θSPP = 63.18o. Note that the angle obtained from (4.2.160) is in this case 
θSPP = 63.28o.  

Consider in the model of SEW excitation (Fig. 4.2.7) not one but two 
symmetrically incident TM-waves:  

	
( ) ( ) ( )( ) ( )( )1 1 1

,0 ,00 , exp exp ,x z x zyH x z ik x ik z ik x ik z= − + − − 	
(4.2.161)

  

where (kz
(1))2 = k0

2 εpr – k2
x,0. In this case, two SEWs propagating in opposite directions 

will be excited along the boundary of zones 2 and 3. As a result, the interference 
pattern of the SEW will form directly under the metal film.  From Maxwell’s 
equations we can easily obtain the distribution of the electric field intensity                                         

Fig. 4.2.7. Diagram of SEW excitation (a) and the equivalent model (b).  

a b
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(|E|2 =|Ex|
2 +|Ez|

2) under the film (when z < –h) in the form  

	 ( ) ( ) ( ) ( ) ( ) ( )( )  
− + +     

2 22 3 3 32 2
SPP ,0 ,0, ~ sin exp 2 ,x z x z zx z k k k x k k z hE 	

(4.2.162)  

where (kz
(3))2 = k2

0 εd – k 2x,0.  Equation (4.2.162) describes the interference pattern 
periodic with respect to the axis Ox and exponentially decaying along the axis Oz. 
The period of the interference pattern is the same as the function sin2 (kx,0x) , i.e.  

	
( )

π π λ
ε θ

= = =ip
,0 SPP pr SPP

,
Re 2 sinx

d
k k

	

(4.2.163)

  

where θSPP is the angle of incidence, defined by the condition (4.2.160).  
The contrast of the interference pattern is given by  
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When the condition (2.4.21) is fulfilled, the following simple expression can be 
obtained for contrast:  
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If a photorecording material is placed in the area under the metal film, the 
interference pattern of the SEW can be written and used for making a diffraction 
grating with period dip. The width of the step is controlled by exposure time.  

Practical use of the considered scheme for the formation of interference patterns 
of the SEW is inconvenient for several reasons. In particular, two coherent beams 
are required, the scheme is not compact, and the formation of an interference pattern 
in a dense dielectric medium requires a prism made of a material with high dielectric 
constant, etc.  

4.2.2. Formation of one-dimensional interference patterns of 
surface electromagnetic waves 

Consider the formation of one-dimensional interference patterns of SEW with a 
diffraction structure consisting of a binary dielectric diffraction grating and a 
metallic film below the grating [21–24].The geometry of the structure shown in 
Fig. 4.2.9. Above and below the structure there is a homogeneous dielectric with 
refractive indices nI and nII, respectively. At the period d the grating has a single 


