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xii Diffractive Optics and Nanophotonics

Introduction
The phenomenon of diffraction, which was originally seen as a 
limiting factor in optics, is now a fundamental basis for the creation 
of a new component base and advanced information technology.

The development of diffractive optics and nanophotonics devices 
is based on a computer solution of direct and inverse problems 
of diffraction theory, based on Maxwell’s equations. Among the 
numerical methods for solving Maxwell’s equations most widely 
used are: the finite-difference time-domain method, the finite element 
method and the Fourier modal method, and also approximate methods 
for calculating diffraction integrals.

The book is devoted to modern achievements of diffractive optics, 
focused on the development of new components and devices for 
nanophotonics, and devices and information technologies based on 
them.

The first chapter describes the Fourier modal method, designed 
for the numerical solution of Maxwell’s equations, as well as some 
of its applications in problems of calculation of diffractive gratings 
with the resonance properties and plasmon optics components.

The Fourier modal method (or rigorous-coupled wave analysis) has 
a wide range of applications. In the standard formulation the method 
is used to solve the problems of diffraction of a monochromatic 
plane wave on diffraction gratings. Introduction of the light beam 
in a plane-wave basis allows to use the method for modelling the 
diffraction of optical pulses. Using the so-called perfectly matched 
layers in combination with artificial periodization enables the method 
to be used efficiently to solve the problems of the diffraction of light 
waves by non-periodic structures. In this chapter the Fourier modal 
method is considered for solving the diffraction of a plane wave in 
the two-dimensional and three-dimensional diffractive gratings, as 
well as in the case of non-periodic structures. The implementation 
of the method is based on the numerical-stable approach, known as 
the scattering matrix method.
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The resonance features in the spectra of periodic diffraction 
structures are studied using the methods developed by the authors 
for calculating the scattering matrix poles. These methods take into 
account the form of the matrix in the vicinity of the resonances 
associated with the excitation of eigenmodes in the lattice and, 
compared with the known methods, have better convergence.

The Fourier modal method and scattering matrix formalism are 
applied to the calculation of diffractive gratings with the resonance 
properties for the conversion of optical pulses. The chapter proposes 
a theoretical model of resonant gratings performing operations of 
differentiation and integration of the optical pulse envelope and the 
results of the calculation and research of diffractive gratings for the 
differentiation and integration of picosecond pulses are presented.

The non-periodic variant of the Fourier modal method is used 
in the problem of calculating the diffractive optical elements for 
controlling the propagation of surface plasmon-polaritons. The 
principle of operation is based on the phase modulation of surface 
plasmon-polaritons by dielectric steps with changing height and 
length and located on the surface of the metal.

The Fourier modal method is also applied to the task of calculating 
the diffractive gratings forming, in the near-field, interference 
patterns of evanescent electromagnetic waves and, in particular 
plasmon modes. The chapter provides a theoretical description and 
a number of numerical examples of calculation of the gratings 
forming interference patterns of evanescent electromagnetic waves 
and plasmon modes with a substantially subwavelength period 
and demonstrates the ability to control the type and period of 
the interference patterns of damped waves due to changes in the 
parameters of the incident radiation.

The practical use of the results of the first chapter includes 
systems for optical computing and ultra-fast optical information 
processing, the creation of high-performance components plasmon 
optics, the contact lithography systems and the systems for optical 
trapping and manipulation of nanoscale objects.

The second chapter deals with the nanophotonics components 
based on photonic crystals: the gradient planar photonic crystal (PC) 
lens and photonic crystal fibers. The ultra-compact nanophotonic 
device is described for effectively connecting two-dimensional 
waveguides of different widths using the PC-lens. It is shown that 
the PC-lens focuses the light into a small focal spot directly behind 
the lens whose size is substantially smaller than the scalar diffraction 
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limit. The simulation was performed using a finite difference solution 
of Maxwell’s equations.

The second chapter also describes the method of calculation of 
optical fibres with the PC cladding. In this waveguide the light 
propagates within the core not due to the effect of total internal 
reflection from the core–cladding interface, and by reflection from a 
multilayer Bragg mirror formed by the system of periodically spaced 
holes around the core. Calculation of spatial modes in PC-fibres is 
based on partitioning the inhomogeneous fibre cross-section into a 
set of rectangular cells, each with a set of known spatial sinusoidal 
modes. Further cross-linking of all modes is carried out at the 
interfaces of all cells. The PC waveguides differ from the step and 
gradient waveguides by that they allow the modes to be localized 
within the core, that is all the modes propagate inside the core 
and almost do not penetrate into the cladding thus increasing the 
diameter of the mode localized within the core. In addition, the PC 
waveguides with a hollow core help to avoid chromatic dispersion 
in the fibre and transmit light with higher power. A short pulse of 
light passing through in a PC waveguide of finite size is transformed  
at the output to white light due to non-linear dispersion. Sections 
of the PC waveguides are used as filters, white light sources, and  
non-linear optics for second harmonic generation.

The third chapter discusses the focusing of laser radiation. The 
concept of the diffraction limit was established in  the 19th century: 
dmin = λ/(2n), where λ is the wavelength of light in vacuum, n is the 
refractive index of the medium. The third chapter shows that using 
diffractive micro-optics components, focusing the light near their 
surface it is possible to overcome the diffraction limit. Attention is 
given to the sharp focusing of laser light using micro-components 
such as the axicon, the zone plate, the binary and gradient planar 
microlens, microspheres. Focusing light near the surface of the micro-
components allows to overcome the diffraction limit as a result of the 
presence of surface waves and the influence of the refractive index 
of the material of the focusing element. Simulation of focusing the 
laser beam is carried out by the approximate Richards–Wolf vector 
method and the finite difference solution of Maxwell’s equations.

Reducing the size of the focal spot and overcoming the diffraction 
limit is an urgent task in the near-field microscopy, optical 
micromanipulation, contact photolithography, increasing the density 
of recording information on an optical disc, and coupling planar 
waveguides of different widths.



xv Introduction

The fourth chapter describes the focusing of singular vortex 
laser beams. At the point of singularity the intensity of the light 
field is zero, and the phase is not defined. There are abrupt phase 
changes in the vicinity of this point. Singularities in light fields 
can appear as they pass through randomly inhomogeneous and non-
linear media. It is also possible to excite vortex fields in laser 
resonators and multimode optical fibres. The most effective method 
of forming the vortex laser beams is to use spiral diffractive optical 
elements, including spiral phase plates and spiral axicons. The fourth 
chapter discusses the formation of vortex beams represented as a 
superposition of Bessel, Laguerre–Gauss, Hermite–Gauss, etc. modes. 
When focusing the vortex beams attention is paid to the combination 
of different types of polarization and phase singularities which lead 
to overcoming the diffraction limit of the far-field diffraction zone.

Main applications of vortex laser beams are sharp focusing of 
laser light, manipulation of microscopic objects and multiplexing 
the channels of information transmission.

In the fifth chapter we consider the problem of optical trapping, 
rotation, moving, positioning of micro-objects through the use of 
diffractive optical elements. Micro-objects are rotated by light beams 
with an orbital angular momentum. Considerable attention is paid to 
the methods of calculating the forces acting on the micro-objects in 
light fields. The problem of creating the torque in micromechanical 
systems using light beams has a fairly long history. In a number of 
studied the problem of rotation is considered in conjunction with 
other tasks: sorting, moving, positioning, etc. It should be noted that 
in all the above cases the focus is primarily on the manufacturing 
technology of micromechanics elements and no attempts are made 
to improve the light beams. At the same time, the calculation and 
application of diffractive optical elements, forming the vortex light 
beams for a specific form of the micromechanical component can 
improve the transmission efficiency of the torque in micromechanical 
systems.

This chapter discusses two methods of calculating the diffractive 
optical elements for forming light fields with a given amplitude-phase 
distribution. One of them is based on calculating a focusator forming 
a light field with a predetermined phase gradient along the contour. 
Another method uses the superposition of zero-order Bessel beams to 
form light traps in the form of hollow beams for opaque microscopic 
objects. The results of experiments on optical trapping and relocation 
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of micro-objects are presented. The chapter examines the possibility 
of using light beams to move the biological micro-objects.

The book has been written by experts of the Image Processing 
Systems Institute, Russian Academy of Sciences. In the first 
chapter, sections 1.1 and 1.2 were written by D.A. Bykov, E.A. 
Bezus and L.L. Doskolovich, section 1.3 by D.A. Bykov, L.L. 
Doskolovich and V.A. Soifer, sections 1.4 and 1.5 by E.A. Bezus and                                                                                                   
L.L. Doskolovich. The second chapter was written by V.V. Kotlyar, 
A.A. Kovalev, A.G. Nalimov and V.A. Soifer. The third chapter – 
by V.V. Kotlyar, A.A. Kovalev, A.G. Nalimov and S.S. Stafeev. The 
fourth chapter was written by S.N. Khonina and the fifth chapter by 
R.V. Skidanov, A.P. Porfir'ev and V.A. Soifer.



1The Fourier modal method

1

The Fourier modal method and its 
use in plasmonics and the theory 

of resonant diffraction gratings

This chapter describes the Fourier modal method (also called rigorous 
coupled-wave analysis) designed for the numerical solution of 
Maxwell’s equations, as well as some of its applications in problems 
of diffractive nanophotonics.

The Fourier modal method has a wide range of applications. The 
formulation of the method is used for the solution of the problem of 
diffraction of a monochromatic plane wave on diffraction gratings. 
The representation of a light beam in the plane wave basis allows 
to use the method for the simulation of the diffraction of spatio-
temporal optical signals (optical pulses). The use of the so-called 
perfectly matched absorbing layers in combination with artificial 
periodization enables the method to be used to solve the problems 
of the diffraction of light waves by non-periodic structures.

In section 1.1 the Fourier modal method is considered in the 
standard formulation for solving the problem of diffraction of a 
plane wave on two-dimensional and three-dimensional multilayered 
periodic diffraction structures and for the case of non-periodic 
structures. The considered implementation of the method is based 
on a numerically stable approach, known as the scattering matrix 
method. The method is described in detail and was used by the 
authors to create original computer programs for the solution of 
problems of diffraction on structures of various types. The readers 
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can safely use the formulas given in section 1.1 when creating their 
own programs for electromagnetic modelling.

The interaction of light with a periodic structure, in particular 
with metal–dielectric structures, is the subject of intense research. 
In such structures there is a wide range of extraordinary (resonant) 
optical effects, including extraordinary transmission, total absorption 
of incident radiation, resonant changes of the transmission and 
reflection coefficients, the formation of regions with a high degree 
of localization of energy due to interference of the evanescent 
and plasmon waves. These effects are usually associated with the 
excitation in a periodic structure of quasi-guided and plasmonic 
eigenmodes. The modes of the structure correspond to the poles 
of the scattering matrix. Section 1.2 presents a number of methods 
proposed by the authors for calculating the poles of the scattering 
matrix. These methods take into account the representation of 
scattering matrix in the vicinity of resonances and, compared with 
the known techniques, have better convergence.

In section 1.3 the method and the scattering matrix technique 
are applied to the calculation of diffraction gratings with the 
resonant properties to transform optical pulses. The first part of this 
section describes in a common approach a class of transformations 
of optical pulses realized by resonant diffraction gratings, and 
proposes a theoretical model of resonant gratings performing 
operations of differentiation and integration of the optical pulse 
envelope. The model is based on the resonant representations of the 
complex amplitude of the zeroth diffraction order in the vicinity 
of the frequencies corresponding to the waveguide resonances 
(Wood’s anomalies) and in the vicinity of the frequency of the 
Rayleigh–Wood’s anomalies associated with the emergence of 
propagating diffraction orders. The section also  presents the 
results of calculations and studies of diffraction gratings to perform 
differentiation and integration of picosecond pulses (Wood’s 
anomalies), as well as the operations of fractional differentiation 
and integration (Rayleigh–Wood anomalies).

The possible applications of the results of this section include 
optical computing and ultrafast optical information processing.

In section 1.4 the aperiodic Fourier modal method is used for 
the design of diffractive optical elements (DOE) to control the 
propagation of surface plasmon–polaritons (SPP). The principle of 
operation of the conventional DOE is based on the phase modulation 
of the input wave field by a diffraction microrelief of variable height. 
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A similar approach can be used to create optical elements for the 
SPP. Attention is given to the mechanisms of phase modulation of the 
SPP and plasmonic modes of thin metal films using dielectric ridges 
of variable height and fixed length (or variable height and length), 
located on the surface of the metal. The section also describes the 
method of suppressing parasitic scattering in diffraction of SPP 
(plasmonic modes) on a dielectric ridge, based on the use of the 
structure of two isotropic dielectric layers on the metal surface. This 
two-layer structure enables phase modulation of the SPP (plasmonic 
modes) while reducing the energy loss in the parasitic scattering by 
an order of magnitude compared to single-layer steps. The section 
also presents the results of calculation and research of diffractive 
lenses for focusing the SPP based on different phase modulation 
methods.

The main practical application of the results of this section is 
the creation of high-performance elements of plasmon optics: lens, 
Bragg gratings, plasmonic crystals.

In section 1.5 the Fourier modal method is applied to the problem 
of calculating diffraction gratings which generate interference patterns 
of evanescent electromagnetic waves in the near field (especially of 
plasmonic modes). The first part of the section provides a theoretical 
description of the interference patterns of evanescent diffraction 
orders for gratings with one- and two-dimensional periodicity. This 
is followed by a series of numerical examples of the gratings lattices, 
forming interference patterns of evanescent electromagnetic waves 
and plasmonic modes with a substantially subwavelength period, 
and the ability to control the type and period of the interference 
patterns due to changes in the parameters of the incident radiation 
is demonstrated.

The practical use of the results of this section includes contact 
nanolithography systems and systems for optical trapping and 
manipulation of nanoscale objects.

1.1.  The Fourier modal method of solving the diffraction 
problems

1.1.1. The equation of a plane wave

This subsection is auxiliary. It considers the derivation of the 
general equation of a plane wave in an isotropic medium used in 
the following description of the Fourier modal method.
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We write the Maxwell equations and material equations in the 
Gaussian system of units:

	

∇× −
∂
∂

∇×
∂
∂















E B

H D

B H
D E

= 1

= 1

=
= .

c t

c t

,

,

,µ
ε

	 (1.1)

Equations (1.1) are written in the absence of charges, in this case 
ε is the complex permittivity. For a monochromatic field

	
E E
H H

( , , , ) = ( , , )
( , , , ) = ( , , )
x y z t x y z t
x y z t x y z t

exp ,
exp ,

−( )
−( )
i
i
ω
ω

	 (1.2)

system (1.1) takes the form:

	
∇×
∇× −




E H
H E

=
=

0

0

i
i

k
k
µ
ε

,
,
	 (1.3)

wherein k0 2= π λ λ/ , is the wavelength. Expanding the rotor operator 
we get

	 	  
		  (1.4)

To obtain the plane wave equation we will seek the solution of 
(1.4) in the form

	 ΦΦ ΦΦ( , , ) = ( ) ,0x y z k x y zexp i α β γ+ +( ) 	 (1.5)

where ΦΦ = E E E H H Hx y z x y z 
T

is the column vector of 
the components of the field. The values α, β, γ in (1.5) define the 
direction of propagation of the plane wave. Substituting (1.5) into 
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(1.4), we obtain

i i ik
E E
E E
E E
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
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
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


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
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i . 	 (1.6)

We represent the equation (1.6) in the matrix form:

	

0 0 0
0 0 0

0 0 0
0 0 0

0 0 0
0 0 0

− −
− −

− −
−

−
−







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







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γ β µ
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ε γ α
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




⋅ΦΦ ΦΦ= = .A 0 	 (1.7)

Direct calculation shows that the determinant of the system (1.7) 
has the form:

	 det A = .2 2 2 2
εµ α β γ εµ+ + −( ) 	 (1.8)

The sought non-trivial solution of the system (1.7) exists when the 
determinant (1.8) is zero. If μ = 1 the determinant of (1.8) vanishes 
provided
                           α β γ ε2 2 2 = .+ + 	 (1.9)

We write down explicitly the solution of (1.6). Under the 
condition (1.9) the rank of the system (1.7) is equal to four, so to 
write the solution the values ​​of the amplitudes Ez and Hz are fixed. 
We introduce the so-called E- and H-waves. For the E-wave Ez ≠ 0, 
Hz = 0, and for the H-wave Hz ≠ 0, Ez = 0. We represent the desired 
solution as a superposition of the E- and H-waves in the form
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(1.10)
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where AE and AH are the the amplitudes of the E- and H-waves, 
respectively.

We write the components of the vector p = ( )α β γ, , , representing 
the propagation direction of the wave, by means of the angles θ and 
φ of the spherical coordinate system:

	 α ε ϕ θ β ε ϕ θ γ ε θ= =cos sin , sin sin , cos= ,	 (1.11)

where θ is the angle between the vector p and the axis Oz, φ is the 
angle between the plane of incidence and the plane xOz. For these 
angles the following relations are fulfilled:

	 α β ε θ
α

α β
ϕ

β

α β
ϕ2 2

2 2 2 2
+ =

+
=

+
=sin , cos , sin . 	(1.12)

We write separately y- and x-components of the electric and 
magnetic fields:
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	 (1.13)

where R is the rotation matrix of the following form:

	 R = .
cos sin
sin cos
ϕ ϕ
ϕ ϕ−









 	 (1.14)

To describe the polarization of the wave, we introduce the angle 
ψ – the angle between the vector E and the incidence plane. The 
incidence plane is the plane containing the direction of the wave 
propagation vector p and the axis Oz. In this case

	 A A
A A
H

E

=
= .

sin ,
cos

ψ
ψ

	 (1.15)
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Note that in the solution of the diffraction problem the case φ 
= 0 corresponds to the so-called planar diffraction. In this case the 
E-waves are waves with TM-polarization and H-waves the waves 
with TE-polarization.

Consider  the  t ime-averaged Umov–Poynt ing vector  S  = 
½Re(E×H*). We compute the z-component of the vector, which 
corresponds to the density of the energy flux through the plane xOy. 
For the E-wave

	 2 = = =2 2S E H E H A Az x y y x E ERe Re cos Re cos ,* * *
−( ) ( ) ⋅ ⋅ε θ ε θ 	  

		  (1.16)
and similarly for the H-wave:

	
2 = = =2 2S E H E H A Az x y y x H HRe Re cos Re cos ,* * *

−( ) ( ) ⋅ ⋅ε θ ε θ
	  

		  (1.17)
The expressions (1.16) and (1.17) describe the energy flux through 

the plane xOy. These expressions are important for the control of 
the energy conservation law in solving the problem of diffraction on 
diffraction structures of a lossless material.

1.1.2. The Fourier modal method for two-dimensional 
periodic structures

The Fourier modal method focuses on the numerical solution of 
Maxwell’s equations for the case of periodic structures, consisting 
of a set  of ‘binary layers’ [1–13].  In each layer,  dielectric 
permittivity (magnetic permeability) of the material of the structure 
is independent of the variable z and the axis Oz is perpendicular 
to the structure. In the method the electromagnetic field in the 
areas above and below the structure is given as a superposition 
of plane waves (diffraction orders). The function of dielectric 
permittivity and magnetic permeability of the material in each 
layer of the structure are represented as segments of the Fourier 
series, and the components of the electromagnetic field are written 
as an expansion in the Fourier modes basis. The calculation of 
the Fourier modes is reduced to eigenvalue problems. Sequential 
imposition of the condition of equality of the tangential components 
of the electromagnetic field at the boundaries of the layers reduces 
the determination of the amplitudes of the reflected and transmitted 
diffraction orders to solving a system of linear equations [1–13].
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Here the method is considered for the two-dimensional diffraction 
gratings (gratings with one-dimensional periodicity).  In the                       
two-dimensional case, the material properties of the structure are 
constant along one of the axes. The structure materials are in a 
general case defined by tensors of permittivity and permeability.

1.1.2.1. The geometry of the structure and formulation of the 
problem
Consider a diffraction grating with a period d along the axis x 
(Fig.  1.1). For gratings with a continuous profile (dashed line in 
Fig.  1.1) the method approximates the grating profile by a set of 
binary layers. We assume that the diffraction grating is made up of 
L binary layers (Fig. 1.1). The permittivity ε and permeability μ in 
the layers depend only on the variable x. Layer boundaries are the 
lines z = di, the l-th layer is located in the area zl < z < zl–1.

Over the considered structure in the region z > z0 = 0 there is a 
homogeneous dielectric with a refractive index nU U= ε . Under the 
structure there is a homogeneous dielectric with a refractive index
nD D= ε .

A plane monochromatic wave is incident on the top of the grating 
(wavelength λ, wave number k0

2= π
λ ), the direction of which is 

defined by the angles θ and φ in the spherical coordinate system 

Fig. 1.1. The geeometry of the problem.



9The Fourier modal method

(Fig. 1.1). The polarization of the wave is determined by the angle 
ψ between the incidence plane and the vector E (see. (1.15)).

The problem of light diffraction by a periodic structure is solved 
by calculating the intensities or complex amplitudes of diffraction 
orders. The diffraction orders are the reflected and transmitted 
plane waves arising in the diffraction of the incident wave on the 
structure. There are reflected orders with amplitudes Ri, i = 0, ±1, 
±2,... and transmitted orders with amplitudes Ti, i = 0, ±1, ±2,... 
(Fig. 1.1). The diffraction orders can also be divided into evanescent 
and propagating. The amplitude of the evanescent  orders decreases 
exponentially away from the gratings.

1.1.2.2. Description of the field above and below the structure
The field above and below the structure is written as a superposition 
of plane waves (Rayleigh expansion). According to (1.5), (1.10), the 
plane wave is represented by a vector of six components:

	 ΦΦ = .E E E H H Hx y z x y z

T
  	 (1.18)

The equation of the incident wave can be represented in the form

	 ΦΦ ΦΦinc incx y z i k x k y k zx y z U, , = ,,0 , ,0( ) ( ) + −( )( )ψ exp 	 (1.19)

where Φ inc(ψ)  denotes the dependence of the incident wave 
on polarization (see (1.15)). The constants kx,0 = k0nUsinθ cosφ, 
k k nx,0 0= U sin cosθ ϕ ,  k k ny = 0 U sin sinθ ϕ ,  k k n k kz x y, ,0 0

2
,0

2 2( )U U= − −  
in (1.19) are determined through the angles θ and φ defining the 
direction of the incident wave.

The field above the grating corresponds to the superposition of 
the incident wave and the reflected diffraction orders:

	
ΦΦ ΦΦ ΦΦU inc R

U( , , ) = ( , , ) ( ) ,, , ,x y z x y z R i k x k y k z
m

m m x m y z m+ ( ) + +( )∑ exp
	  

		  (1.20)
where Φ(R) = ΦERE + ΦHRH. Expression Φ(R) corresponds to the 
representation (1.10) of the reflected wave as a sum of E- and 
H-waves with complex amplitudes RE  and RH respectively.

The f ield below the grat ing is  expressed s imilar ly as  a 
superposition of transmitted waves:

ΦΦ ΦΦD
D( , , ) = ., , ,x y z T i k x k y k z z

m
m
T

m x m y z m L∑ ( ) + − −( )( )( )exp 	 (1.21)
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The directions of the orders in (1.20) (1.21) are given by 
propagation constants kx,m, ky, kz,p,m. The propagation constants have 
the form

	

k k n m
d

k k n

k k n

x m

y

z p m p

, 0

0

, , 0

2

=

=

=

U

U

sin cos ,

sin sin ,

θ ϕ
λ

θ ϕ

+







( ) −− −k kx m y,
2 2 ,

	 (1.22)

where p is taken as ‘U’ for the reflected orders (the field above 
the grid) and ‘D’ – for the transmitted orders (the field under the 
grating). The expression for kx,m follows from the Floquet–Bloch 
theorem [14, 15]. From a mathematical point of view the form of 
kx,m provides the implementation of the so-called quasi-periodicity 
condition

	 ΦΦ ΦΦp p
xx d y z x y z i k d p+( ) ( ) ( ) =, , = , , ,0exp , ,U D .	 (1.23)

According to (1.23), the amplitude of the field does not change 
with shifts by a period. The waves with real kz,p,m are propagating, 
those with imaginary one – evanescent.

1.1.2.3. The system of differential equations for the description 
of the field in the layer
We turn now to the field within the particular l-th layer. For 
simplicity, we omit the index l.

The field in each layer is described by the Maxwell’s equations 
for the monochromatic field in the form

	
∇×
∇× −




E
H

=
=

0

0

i k
ik





µµΗΗ
εεΕΕ

,
, 	 (1.24)

where 
 

εε µµ, are tensors in the most general case:

	
 

εε µµ= =
1,1 1,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

1,1ε ε ε
ε ε ε
ε ε ε
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












,

11,2 1,3

2,1 2,2 2,3

3,1 3,2 3,3

µ
µ µ µ
µ µ µ
















. 	 (1.25)
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The tensor components depend only on the coordinate x . 
Expanding the rotor operator (1.24), we obtain:
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	 (1.26)

We represent the components of the electric and magnetic fields 
in the form of Fourier series with respect to variable x:
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	 (1.27)

The representations (1.27) are written with the quasi-periodicity 
of the field components with respect to variable x taken into account. 
We restrict ourselves to a finite number of terms in the expansion 
(1.27), corresponding to − ≤ ≤N j N . From variables Sx,j, Sy,j, Sz,j, Ux,j, 
Uy,j, Uz,j, we form column vectors, Sx, Sy, Sz, Ux, Uy, Uz, containing 
2N + 1 elements each.
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Consider the expansion of  the product  of  two functions 
εa bx E x y z( ) ( ), ,  into the Fourier series:

	

ε
π

a b
m

a m
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b l x lx E x e i
d
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� (1.28)
Re ta in ing  a  f i n i t e  number  o f  t e rms  co r r e spond ing  to 

− ≤ ≤ − ≤ ≤N j N N l N,  in (1.28), we obtain:

	 [ ( ) ( )] = ( ) = ( ) [ ( )],ε ε εa b a b a bx E x x x E x� � � �S 	 (1.29)

where the square brackets denote the vectors composed from the 
Fourier coefficients of the expansion of functions εa bx E x( ) ( )  and 
Eb(x), and εa x( )� �  is the Toeplitz matrix of the Fourier coefficients, 
which has the following form:
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. 	 (1.30)

Substituting (1.27) into (1.26) and equating coefficients of the 
same Fourier harmonics, we obtain:
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where K Kx
j

x j
y

j

yk
k

k
k

= , =
0 0

diag diag, – diagonal matrices, Ei j i j, ,= ε��� ��� and 

Mi j i j, ,= µ��� ��� are the Toeplitz matrices of the form (1.30), made up 

of the expansion coefficients in the Fourier series εi,j (x) and μi,j (x).
We perform a change of variables z' = k0z and transform the 

system (1.31) to the form:

	

−
′

+ + −

−
′

− − −

d
dz

i

d
dz

y
x y z y z

x
x y

S
M U M U M U K S

S M U M U

=

=

1 1 1,2 1,3

2 1 2,2

,

,

,

MM U K S

U
E S E S E S K U

U

2,3

1 1 1,2 1,3=

=

z x z

y
x y z y z

x

i

d
dz

i

d
dz

−

−
′

+ + −

−
′

−

,

,,

EE S E S E S K U

E S K U K U E S E

2 1 2,2 2,3

3,3 3 1 3,2=

,

,

,x y z x z

z x y y x x

i

i i

− − −

− − − SS
M U K S K S M U M U

y

z x y y x x yi i
,

,3,3 3 1 3,2= .− − −





















	

(1.32)

We rewrite the first four equations of the system in matrix form:

	

d
dz

i
i

y

x

y

x

y

x

y

x

y

′





































−

−
−

S
S
U
U

Y

S
S
U
U

K M
K

=

1,3

xx

y

x

z

zi
i

−
−

− −































M
E K
E K

S
U

2,3

1,3

2,3

,

	

(1.33)

where

	

Y

0 0 M M
0 0 M M
E E 0 0
E E 0 0

=

1,2 1 1

2,2 2 1

1,2 1 1

2,2 2 1

−
− −

− −


















,

,

,

,





.

	

(1.34)

From the last two equations of (1.32) we express Sz and Uz and 
substitute the resulting expressions into (1.33). As a result, we obtain 
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a system of linear differential equations with respect to x- and y- 
Fourier components of the fields:
where

	

d
dz

y

x

y

x

y

x

y

x

′





































S
S
U
U

A

S
S
U
U

= ,

	

(1.35)

where

	

A Y

K M
K M
E K
E K

E 0
0 M

=

1,3

2,3

1,3

2,3

3,3
1

3

−

−

−





















−

i
i

i
i

y

x

y

x

,,3
1

3,2 3 1

3,2 3 1
−













−
−










E E K K
K K M M

,

,
.

i i
i i

x y

x y

	  
		  (1.36)

Thus, we have obtained a system of linear differential equations 
of the first order for the vectors Sx, Sy, Ux, Uy. Note that the matrix 
A has the dimensions 4(2N +1)×4(2N +1).

Correct rules of the Fourier expansion of the product of 
functions

The derivation of the system of differential equations (1.35) 
was based on the representation in (1.26) of the component of 
electromagnetic fields and of the components of permittivity and 
permeability tensors in the form of segments of the Fourier series. 
The representation of the products of the functions in (1.26) by the 
Fourier series has its own peculiarities. The used formulas (1.28)–
(1.30) have limited applicavility.

Consider two periodic functions

f x f iKmx g x g iKmx K
dm

m
m

m( ) ( ) 2
= ( ) = ( ) =∑ ∑exp , exp , π

	
(1.37)

and the expansion of their product into the Fourier series
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h x f x g x h iKmx

m
m( ) ( ) ( )= = ( )∑ exp .

	
(1.38)

The Fourier coefficients of the product are the values

	
h f gj j m m

m N

N

= −
=−
∑

	
(1.39)

obtained by direct multiplication of the series (1.37), (1.38). Equation 
(1.39) for calculating the Fourier coefficients is called the Laurent 
rule. In matrix notation (1.39) can be represented as [5]

	 [ ] = [ ],h f g� � 	 (1.40)

where, as in (1.29), the square brackets denote the vectors composed 
from the Fourier coefficients of the expansion of the functions, and 

f� � is the Toeplitz matrix of the Fourier coefficients.
As was shown in [5, 6], the use of formula (1.40) is correct if 

there is no value x for which the functions f (x) and g(x) show a 
discontinuity at the same time. Using the Laurent rule (1.40) for 
the product of the functions having identical points of discontinuity 
leads to poor convergence of the Fourier series at the points of 
discontinuity.

If the functions f (x) and g(x) are discontinuous at the same time, 
but the function h(x) = f(x)g( ) is continuous, it is correct to use the 
so-called inverse Laurent rules [5]:

	
[ ] = 1 [ ]

1

h
f

g
�

�
���

�

�
���

-

.
	

(1.41)

In the products μi,l(x)·Hx(x,y,z) and εi,l(x)·Ex(x,y,z) in (1.26), 
both expanded functions have discontinuities at the same points 
x, corresponding to vertical interfaces of the media in the layers. 
Accordingly, it is erroneous to use the Laurent rule (1.28)–(1.30) 
when writing (1.31). Errors in the use of the Laurent rule are 
significant when working with diffraction gratings of conductive 
materials. In particular, the erroneous use of the Laurent rule leads 
to slow convergence of the solutions for binary metal gratings in 
the case of TM-polarization [5–10]. In this case we define the 
convergence as the stabilization of the results of the calculation of 
the amplitudes of diffraction orders with increasing number of the 
Fourier harmonics N in the components of the field (1.27).
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Continuous components at the vertical boundaries between the 
media are the tangential components Ey, Ez, Hy, Hz and the normal 
components of the electric displacement and magnetic induction 
Dx, Bx. We express discontinuous components Ex, Hx through the 
continuous field components

	

E D E E

H B H H

x x y z

x x y z

= − −

= − −

1

1
11

12

11

13

11

11

12

11

13

11

ε
ε
ε

ε
ε

µ
µ
µ

µ
µ

,

	

(1.42)

and substitute into Maxwell’s equations (1.26). The result is:

	

∂
∂

−
∂
∂

∂
∂

− ∂
∂

+ −
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y

E
z

ik B
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z y
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x z
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=

=

0

0
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1,1
2,2 2,1

1,2

,

∝
∝

∝ ∝
∝
∝11,1

2,3 2,1
1,3

1,1









 + −





















∂
∂

− ∂

H H

E
x

y z

y

∝ ∝
∝
∝

,

EE
y

ik B Hx
x y∂
+ −








 + −= 0

3,1

1,1
3,2 3,1

1,2

1,1
3,3 3,1

∝
∝

∝ ∝
∝
∝

∝ ∝
∝11,3

1,1

0=

=

∝




















∂
∂

−
∂
∂

−

∂
∂

− ∂
∂

H

H
y

H
z

ik D

H
z

H
x

z

z y
x

x z

,

,

−− + −








 + −ik D Ex y0

2,1

1,1
2,2 2,1

1,2

1,1
2,3 2,1

1,3ε
ε

ε ε
ε
ε

ε ε
ε
ε11,1

0
3,1

1,1
3,2 3,=















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∂
∂

− ∂
∂
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E

H
x
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ik D
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y x
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,

ε
ε

ε ε 11
1,2

1,1
3,3 3,1

1,3

1,1

ε
ε

ε ε
ε
ε









 + −























E Ey z .

























( )

	  
		  (1.43)

Equat ions  (1 .43)  do  not  conta in  products  of  funct ions 
simultaneously suffering a discontinuity. Therefore, in the transition 
to the space–frequency domain, we can use the direct Laurent 
rule (1.29), (1.30). According to (1.42), the vectors of the Fourier 
coefficients of the functions Dx, Bx have the form
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(1.44)

Performing in (1.43) the transition to the space–frequency domain 
and transforming the result, we also obtain the system of differential 
equations (1.35)–(1.34) where the matrices Mi,j and Ei,j have the form
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		  (1.45)
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The system of differential equations (1.35) with the matrices 
Mi,j, Ei,j in the form (1.45) will be called a system, obtained using 
the correct rules of the Fourier expansions of the product of the 
functions.

The form of the matrix of the system for different permittivity 
tensors

We consider some special kinds of tensors of permittivity and 
permeability and the corresponding matrices of the system of 
differential equations (1.35). The systems of differential equations 
are presented for the case of correct rules of the Fourier expansions.

Consider the case of an isotropic material. For this material,       
μ = 1 and ε is a scalar. In this case, the matrices Ei,j, Mi,j, take the 
following form:

	

E E E E E

E E E E E

1,1

1

2,2 3,3

1,2 1,3 2,1 2,3

1 = =

= = = =

= = =
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* , ,
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ε
�
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��
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�� � �
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1,2 1,3 2,1 2,3 3,1 3,2

= =
= = =
= = = = =

E 0
M M M I
M M M M M M

,
,

== ,0 	

(1.46)

where I is the identity matrix with the dimensions (2N+1)×(2N+1). 
Substituting (1.46) into (1.36)–(1.34), we obtain the matrix of the 
system of differential equations in the form
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=
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(1.47)

Consider the case of a planar incidence when ky = 0 (φ = 0) 
in (1.22) and the direction vector of the incident wave lies in the 
plane xOz. In this case, Ky = 0 (1.47) and the system of differential 
equations (1.35) splits into two independent systems
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(1.48)
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This result in the case of a planar incidence reduces the solution 
of the problem of diffraction to two independent problems of 
diffraction of the waves with TM- and TE-polarization.

Currently, there is considerable interest in the structures 
comprising layers of a magnetic material. In such structures the 
optical properties of the materials can be modified by an external 
magnetic field. This allows to effectively control the amplitude and 
phase of the diffraction orders with the help of an external magnetic 
field. For magnetic materials the dielectric constant is given by the 
tensor [16, 17]:

	



ε =
ε θ θ ϕ
θ ε θ ϕ

θ ϕ

ig ig
ig ig
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M M M

M M M

M M

cos sin sin
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


,

	

(1.49)

where ε is the main dielectric constant of the medium, g is the 
modulus of the gyration vector of the medium proportional to the 
magnetization [16, 17], θM and φM are the spherical coordinates, 
describing the direction of the magnetization vector. In the optical 
frequency range μ = 1.

We consider three basic cases corresponding to the direction of 
the magnetization vector along the three coordinate axes.

For the polar geometry of magnetization (magnetization vector is 
perpendicular to the plane of the layers of the structure and directed 
along the axis Oz) θM = 0 and the tensor (1.49) takes the form:
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	 (1.50)

In this case
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		  (1.51)

where
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In the case of the meridional geometry of magnetization (the 
magnetization vector is parallel to the plane of the layers and directed 

along the axis Ox) θ π
M =

2
, φM = 0 and the tensor (1.49) takes the 

form
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In the case of (1.52) the matrix of the system takes the form
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K K E K

=

1 1 1

1 1 1

−

−
− −

−

− − −

− − −
y y x y y

x x x x y

y x
*

yy

x x y x yK

2

1 2 1 1

0 0
GE G K E K K GE GE K− − −+ − − −





















,

	  
		  (1.53)
where G = g� � .

For the equatorial geometry of magnetization (the magnetization 
vector is parallel to the plane of layers and the direction of the axis 

Oy) θ ϕ
π

M M= =
2

. In this case from (1.49) we obtain:

	



ε =
0

0 0
0

.
ε

ε
ε

ig

ig−















 	

(1.54)

For the tensor (1.54) the matrix of the system takes the form

	

A

0 K E HE K E K I K E K
0 K E HE K E K I K E

=

2
1

2
1

2
1

2
1

2
1

2
1

−

−
− −

− − −

− − −
y y x y y

x x x x

*

* KK
K K E K E HE HE E HE K E HE K
K E K K 0 0

y

y x y x y

x x y

* * * * *− − −
− −







− − −2
2

1
2

1
2

1

2














 	  

		  (1.55)
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1.1.2.4. Representation of the field inside the layer
For direct representation of the field in the layer, we consider the 
eigendecomposition of the matrix A:

	 A W W= ,1ΛΛ −
	 (1.56)

wherein ΛΛ =
i

idiag λ is the diagonal matrix of eigenvalues of the 

matrix A, and W is the matrix of eigenvectors. Then the solution of 

system of differential equations (1.35) can be written as

	

S
S
U
U

W C W C w

y

x

y

x

i
i i iz k z c



















′( ) ′ ( ) ′ ′∑= = =0exp exp expΛΛ ΛΛ λ kk z0 .( )
	  

		  (1.57)
We split the last sum into two depending on the sign of the real 

part λi and write the expression in matrix notation:

	

S
S
U
U

w wy

x

y

x

i
i i i

i i

i i ic k z c k

















′ ( )∑ ∑= =0
: <0

exp expλ λ
λRe

00

: >0
0 1

( ) ( )
0

( )

( ) =

= (

z z

c k z z

k z

l

i i

i i i l

−( ) +

−( )∑ −

− −

Reλ
λw

W

exp

exp ΛΛ −−( ) +

−( )
−

+ +
−

+

z

k z z

l

l

)

( ) ,

( )

( ) ( )
0 1

( )

C

W Cexp ΛΛ 	

(1.58)

where Λ(+) and Λ (–) are the diagonal matrices of the eigenvalues 
whose the real parts are positive and negative, respectively, W(+) 
and W(–) are the corresponding eigenvector matrices, C(–), C(+) are the 
vectors of arbitrary constants. The representation (1.58) is suitable 
for numerical calculations. The exponent in (1.58) always has a 
negative real part. This ensures that there is no numerical overflow.

The procedure for calculating the eigenvectors and eigenvalues ​​
can in some cases be significantly speeded up taking into account 
the specific form of the matrix A [4]. In particular, the matrix A in 
(1.47), (1.48) and (1.51) has the following block structure:
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A

0 A
A 0

=










12

21

.
	

(1.59)

We write for A the matrices of eigenvectors and eigenvalues ​​in 
the form

	
W

W W
W W

0
0

=








 =











11 12

21 22

11

22

, ΛΛ
ΛΛ

ΛΛ 	
(1.60)

Since A W W= −ΛΛ 1, then

	

0 A
A 0

W W
W W

W W
W W

0
0

12

21

11 12

21 22

11 12

21 22

11







 ⋅








 =









 ⋅

ΛΛ
ΛΛΛΛ22











	

	

A W A W
A W A W

W W
W W

12 21 12 22

21 11 21 12

11 11 12 22

21 11 22 22









 =






ΛΛ ΛΛ
ΛΛ ΛΛ






	

and we have:

	

A A W A W W
A A W A W W

12 21 11 12 21 11 11 11 11

12 21 12 12 22 22 12 22 2

= =
= =

ΛΛ ΛΛ ΛΛ
ΛΛ ΛΛ ΛΛ

,

22. 	
(1.61)

We introduce the matrix B = A12A21 and write (1.61) in the form

	 B W W B W W⋅ = ⋅ =11 11 11
2

12 12 22
2ΛΛ ΛΛ, . 	 (1.62)

According to (1.62) W W11 11
2

12 22
2, , ,′ =ΛΛ ΛΛ ΛΛ  are the matrices  of 

the eigenvectors and the diagonal matrices of the eigenvalues of the 
same matrix B. Therefore

W W11 12 22 11= = −, ΛΛ ΛΛ  and W A W W W21 21 11 11
1

22 21= = −−ΛΛ , .  (1.63)

The relations (1.63) determine the eigenvalues ​​and eigenvectors 
of the matrix A by the eigenvalues ​​and eigenvectors of the matrix 
B half their size in the form:

	
W

W W

A W A W
=

′ − ′













=
′

− ′













− −
11 11

21 11

1

21 11

1

0

0ΛΛ ΛΛ
ΛΛ

ΛΛ

ΛΛ
, .

	  
		  (1.64)
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In [4] it is pointed out that halving the dimensions of the 
eigenvalue problem ​is equivalent to transforming the system (1.35) 
of 4(2N+1) first-order differential equations to a system 2(2N+1) of 
second-order differential equations.

1.1.2.5. ‘Stitching’ of the electromagnetic field at the 
boundaries of layers
The general representation of the field in the layer was described 
above. To obtain a solution that satisfies the Maxwell’s equations, it 
is necessary to equate the tangential components of the fields at the 
boundaries of the layers. Equating the tangential field components 
is equivalent to equating the functions (1.58) corresponding to the 
Fourier coefficients at each fixed z. We write preliminary solutions 
of (1.58) on the upper and lower boundaries of all the layers. For 
convenience, we assume that the matrix of eigenvectors W is given 
by:

	
W W W= .( ) ( )− +  	

(1.65)

In addition, we introduce a vector of unknown constants C as 
follows:

	 C
C
C

= .
( )

( )

−

+









 	 (1.66)

In view of this notation the solution of (1.58) on the upper and 
lower boundaries of the layer has the form

	

S
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U
U

W X C

y l

x l

y l

x l

z
z
z
z

( )
( )
( )
( )

=

1

1
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1
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−

−

−
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















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+WW C W
X 0
0 I

C NC( ) ( )
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= =+ +
−
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


 ,

	  
		  (1.67)
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W C W X C

y l

x l

y l
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z
z
z
z

( )
( )
( )
( )

= ( ) ( ) ( ) ( ) ( )


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
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

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
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


+− − + + + == =( )W
I 0
0 X

C MC+









 ,

	

(1.68)

where

	
X X( ) ( )

0 1
( ) ( )

0 1
+ +

−
− −

−= −( )( ) = − −( )( )exp , exp .ΛΛ ΛΛk z z k z zl l l l 	
(1.69)
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Equating the tangential components at the interface of the adjacent 
layers, we obtain the equations

	 M C N Cl l l l l L- -1 1 = , = 2, , , 	 (1.70)

where the index l = 2 corresponds to the condition for the lower 
boundary of the upper layer, l = L for the upper boundary of the 
lower layer.

The relations (1.70) must be supplemented by the conditions of 
the equality of the tangential components of the field above the 
structure of (1.20) and at the upper boundary of the 1st layer, as well 
as the field below the structure (1.21) and at the lower boundary of 
the L-th layer. Given that the components in the field in the region of 
the layers are represented by segments of the Fourier series with the 
dimension 2N +1, in representations of the field above and under the 
grating (1.20)–(1.22) we should also take 2N +1 waves at –N ≤ i ≤ N.

By adding these relations for the upper and lower boundaries of 
the diffractive structure, we obtain the following system of linear 
equations:

	

D P R N C
M C N C

M C P T

+







( )

− −

( )

U

D

=
= , = 2, ,

= ,

1 1

1 1

,
,l l l l

L L

l L

	

(1.71)

where R and T are the vectors of complex amplitudes of the reflected 
and transmitted orders, respectively. These vectors are of the form:

	
R

R
R

T
T
T

= = ,E

H

E

H



















,

	
(1.72)

where RE and TE are the vectors of complex amplitudes of the 
E-waves, RH and TH are the vectors of complex amplitudes of the 
H-waves.

The vector D in (1.71) represents the incident wave and has the 
form (see (1.13) for θ π θ→ − ):

	

D =

cos sin
cos cos
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ϕ
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⋅
⋅
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sinψ ,

	

(1.73)
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where δi is the column vector in which only one element, standing 
in the middle, is nonzero and is equal to one. Column vector δi  has 
the dimension 2N +1 and vector D the dimension 4(2N +1).

The matrices P(U) and P(D) (1.71) correspond to the reflected and 
transmitted orders, respectively, and have the form

	

P p

p

p

pi n i n
( )

( )

( )

( )

−

− −

− −
=

cos sin cos

cos cos sin

cos cos s

ΘΘ ΦΦ ΦΦ

ΘΘ ΦΦ ΦΦ

ΦΦ ΘΘp p iin

sin cos cos

, ,
ΦΦ

ΦΦ ΘΘ ΦΦi n i n

p

p
p p

U D,

−





















=

( )
	

(1.74)

where Φ, Θ(P) are the diagonal matrices of the angles determining 
the direction of the scattered diffraction orders. They satisfy the 
following relations:

	
sin , cos ,ΦΦ ΦΦ=

+
=

+i

y

x i y
i

x i

x i y

k

k k

k

k k
diag diag

,
2 2

,

,
2 2

	
(1.75)

	
cos , cos ., ,ΘΘ ΘΘ( ) ,

0

( ) ,

0

U U

U

D D

D

diag diag= =
−

i

z i

i

z ik
k n

k
k n 	

(1.76)

The expressions (1.73)–(1.74) follow directly from the general 
formulas (1.12) and (1.13) for a plane wave with the form of 
propagation constants of the orders (1.22) taken into account.

According to (1.71), the solution of the diffraction problem is 
reduced to solving a system of linear equations. The sequential 
expression of the coefficients Cl–1 in the layer with the index (l–1) 
through the coefficients Cl–1  in the l-th layer allows to reduce the 
system (1.71) to a system of equations for the coefficients R and T. 
Indeed, from the last two equations in (1.71), we obtain

                          M C N M P TL L L L− −
− ( )=1 1

1 D . 	 (1.77)

By substituting (1.77) into the equation with index l = L–1 in 
(1.71) we have

	 M C N M N M P TL L L L L L− − − −
− − ( )=2 2 1 1

1 1 D . 	 (1.78)

Continuing this process to the equation with the index l = 2, we 
obtain
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	 M C N M P T1 1
1

2

=










−

=

( )∏ l l
l

L
D . 	 (1.79)

Finally, substituting (1.79) in the first equation (1.71), we obtain 
the desired system of linear equations for the coefficients R and T 
in the form of:

	
D P R N M P T+ =











( ) −

=

( )∏U D
l l

l

L
1

1

.
	

(1.80)

Note that writing the system in this form allows to calculate the 
vectors R and T, but the calculation directly from (1.80) can lead 
to a numerical instability of the problem [3]. There are several 
numerically stable approaches [3, 18] to calculating the vectors R and 
T. We consider the so-called method of the scattering matrix [18].

1.1.2.6. The scattering matrix algorithm
Consider the Rayleigh expansion (1.20), (1.21) of the field above 
the structure, but instead of one incident wave (corresponding to 
the zeroth diffraction order), we consider a set of incident waves 
(respective orders –N,...,N ). Then, the propagation constant can be 
described by the following expressions:

	
k k k m

d
m N Nx m x, , , , , ;= + = − …⋅0 0

λ

	
(1.81)

	 k k kz m
R

x m, 0
2

,
2= ;εU − 	

(1.82)

	 k k kz m
I

x m, 0
2

,
2= ,− −εU 	 (1.83)

where kz m
R
,  are the propagation constants corresponding to the  

reflected orders; kz m
I
,  are the propagation constants of the waves 

incident on the structure from above.
Also, consider a set of waves incident on the structure from 

the substrate and write similar relations for the orders under the 
structure:

	 k k kz m
T

x m, 0
2

,
2= ;− −εD 	

(1.84)

	 k k kz m
J

x m, 0
2

,
2= ,εD − 	

(1.85)
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where kz m
T
, are the propagation constants corresponding to the 

transmitted orders; kz m
J
,  are the propagation constants of the waves 

incident on the structure from the substrate side.
In this case, when in addition to the 2N +1 reflected and 2N +1 

transmitted diffraction orders there are also 2N +1 waves incident 
from above and 2N +1 waves incident from below, the calculation of 
complex amplitudes of diffraction orders consists in the determination 
of the S-matrix satisfying the equation

	

T
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S
I
J





















+

= ,1

1L 	
(1.86)

where R and T are the vectors of the complex amplitudes of the 
reflected and transmitted diffraction orders, and I1 and JL+1 are the 
vectors of the complex amplitudes of the waves incident on the 
structure from the top and the bottom, respectively. The matrix S 
in (1.86) is called the scattering matrix. The scattering matrix S is ​​
completely determined by the geometry of the structure, the optical 
properties of materials and the parameters of the incident radiation.

The difference between S and the matrix of the system in the 
previously obtained expression (1.80) is that now it is necessary to 
consider not one incident wave but a set of waves incident on the 
structure from both the top and the substrate side. For the incident 
waves instead of (1.73) we will use the following expression at          
p = U:
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.

	

(1.87)

When p = D the expression (1.87) describes the Fourier 
coefficients of the tangential components of the fields E and H 
corresponding to the waves incident on the structure from the 
‘bottom’.

The system (1.71) will now take the form:
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(1.88)

We introduce the notation
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(1.89)

having the meaning of the complex amplitudes of the incident and 
scattered orders in each layer (see Fig. 1.2). Furthermore, to write 
system (1.88) in the most compact form, we introduce the notation
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(1.90)

Then the system (1.88) can be written as
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Fig. 1.2. Representation of fields at the bottom border of the l–1-th layer (Φ1), at 
the upper (Φ2) and lower (Φ3) borders of the l-th layer and the upper border of 
the l+1-th layer (Φ4).
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We consider the numerically stable method for finding the 
scattering matrix of the multilayer structure [18]. We introduce the 
notation  S(l) for the scattering matrix, which connects the Fourier 
components of the field at the lower boundary of the structure and 
the lower boundary of the l-th layer
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

	
(1.92)

Also, we introduce the scattering matrix S( )l  linking the Fourier 
components of the field at the lower boundary of the structure and 
the upper boundary of lth layer:
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.	
(1.93)

Consider the sequential method of constructing the scattering 
matrix structure, starting from the matrix S IL+( ) =1 , where I is the 
identity matrix. We consistently find the matrices S( )l and S( )l in the 
following sequence:
	

            I S S S S S S S= → → → → → → =+( ) ( ) ( ) −( ) ( ) ( )� � � �L L L L1 1 1 0
.	 (1.94)

Equalities (1.89) make it easy to find the matrix S( )l , knowing 
the matrix S( )l :
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(1.95)

We find the numerically stable equations for calculating the 
matrix S(l–1) on the basis of the matrix 

S( )l . To do this, we write the 
equation of the system (1.91) with the number l+1 in the following 
matrix form:
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(1.96)

We introduce the notation H(l) by rewriting the expression (1.96) 
as follows:
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(1.97)

Matrix H(l) has the meaning of the scattering matrix linking the 
field at the lower boundary of the l-th layer and the upper boundary 
of the l+1-th layer. On the basis of expressions (1.92), (1.93), (1.97) 
it can be shown that the matrix S(l) is ​​calculated as

	 S H S( ) ( ) ( ) ,l l l= ⊗ +


1
	 (1.98)

where the associative operation “ ⊗ ” is defined as follows [18]:
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		  (1.99)

Note that in (1.95), (1.97), (1.99) there is no inversion of the 
ill-conditioned matrices, therefore, this method allows to find the 
scattering matrix of the structure S and to avoid problems with 
numerical stability.

If a single plane wave of unit intensity is incident on the structure 
from above, complex transmission T and reflection  R coefficients 
are found from (1.86):
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(1.100)

1.1.2.7. Calculation of the field distribution
In the calculation of the field distribution in the structure there may 
be the same problems with numerical stability as in the calculation 
of the complex amplitudes of diffraction orders. To construct the 
distribution of the field on the basis of expressions (1.27) and (1.58), 
it is necessary to know the values ​​of the vectors C(–), C(+). Consider 
an iterative procedure for numerically-stable calculation of these 
vectors [19].

We assume that the vector R of the complex amplitudes of the 
reflected orders and matrices S(l), S( )l  is already calculated by the 
method described in the previous section.
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We construct a recursive procedure for computing C l
(+). From 

(1.97) at l = 0 we obtain the expression C1
(+) in the form:

	
C T H I H J H I H H R1

( )
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2 2
(0) 1+ −
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1, .
	  

		  (1.101)

Now, assuming that Cl
(+) is known we find expression C Tl l+

+
+=1

( )
1 . 

From equation (1.93), taking into account JL+1 = 0, we obtain
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(1.102)

We write the matrix S1,1
( )l  equation of (1.98) (1.99) in the form:
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(1.103)

We express the matrix S1,1
( )l  from formula (1.95):
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( )l l

l= +( )
.	 (1.104)

We express from equations (1.103) the matrix S1,1
( 1) 1l+ −( ) , and using 

the equation (1.104) we exclude matrix S1,1
( )l :
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		  (1.105)

Multiplying the left and right hand sides of (1.105) on the right 
by T, with (1.102) taken into account, we finally obtain:
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	 (1.106)

The recurrence relation (1.106) with the formula (1.101) allows to 
find Cl

(+) for all l. We now obtain a formula for finding Cl
(–) = Rl+1. 

From formula (1.92) at JL+1 = 0 we have:

	 C R S I S X Cl l
l

l
l

l l
( )

1 2 1 1 2 1
−

+ +
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,

( ) ( ) ( )

	 (1.107)

1.1.2.8. Intensities of the diffraction orders
In the analysis of the field away from the grating researchers are 
usually not interested in complex amplitudes (1.72) and pay attention 
to the intensities of the reflected and transmitted propagating 

.

.

.
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diffraction orders. The propagating orders are determined by the 
real values kz,p,m in ​​(1.22). The intensities of the diffraction orders 
are defined as the flux of the Umov–Poynting vector through the 
plane z = const, normalized to the correspondng flux of the incident 
wave [15]. Taking into account the expressions (1.16) and (1.17) the 
intensity of the orders can be found from the following expressions:

	
I R RR
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(1.108)
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(1.109)

where the diagonal matrices cosΘ(U), cosΘ(D) are defined in (1.76), 
and squaring of vectors RE, RH, TE, TH is performed element wise. 
For evanescent diffraction orders Re(cosΘ(p)) = 0, p = U, D, therefore 
their intensities are equal to zero.

In general, propagating diffraction orders are plane waves with 
elliptical polarization. Indeed, each diffraction order corresponds to 
the superposition of the E- and H-waves. Let EE, EH be the complex 
amplitude of the electric field at the E- and H-waves. Note that the 
electric field vectors in the E- and H-waves are perpendicular to each 
other and perpendicular to the direction of wave propagation. The 
addition of perpendicular oscillations results in the formation of an 
elliptically polarized wave. The polarization ellipse is characterized 
by two parameters: the angle φ  of the major axis of the polarization 
ellipse and the ellipticity parameter χ [20]. The ellipticity parameter 
characterizes the ratio of the lengths of the a ,  b  axes of the 
polarization ellipse in the form tg χ = a b . The parameters φ  and χ 
are determined through complex amplitudes EE, EH as [20]
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In conclusion, let us make a few remarks about the choice of the 
parameter N that determines the length of the segments of the Fourier 
series approximating the components of the electric and magnetic 
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fields in the grating. For a given N the number of calculated orders 
is equal to 2N +1, from –N to +N. The parameter N must be greater 
than the number of propagating orders. If the grating consists only 
of  dielectrics (all refractive indices are real numbers), and the 
parameter N satisfies this condition, the energy conservation law in 
the following form should be satisfied:

	 ∑ ∑+I IR T = 1 	 (1.111)
If the grating contains absorbing materials, the sum (1.111) 

should be less than one. In general, N is selected in computational 
experiment on the basis of the condition of stabilizing the intensities 
of the orders.

1.1.2.9. Numerical example
Consider the example of calculation of the intensities of diffraction 
orders of a binary grating. The grating geometry is shown in Fig. 
1.3. The grating parameters are shown in the Fig. caption.

In the calculations the parameter N that determines the length 
of the segments of the Fourier series was N = 20. The calculations 
were carried out for the TM-polarized normally incident wave. The 
results of calculation of the reflection and transmission spectra of 
the grating (the intensities of diffraction orders) are shown in Fig. 
1.4.

Fig. 1.3. The geometry of the binary grating (Parameters: d  = 1000  nm, a  =                  
200 nm, h = 200 nm, εsup = 1, εgr= 4, εsub= 2.25).

1.1.3. The Fourier modal method for three-dimensional 
periodic structures

Consider the described method in the case of three-dimensional 
periodic diffraction structures. The z-axis is perpendicular to the 
plane in which the diffraction grating is positioned. The functions 
of permittivity and magnetic permeability in the grating region are 
assumed to be periodic with respect to the variables x, y with periods 
dx and dy respectively. As in the two-dimensional case, we assume 
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Fig. 1.4. The intensities of the reflected and transmitted diffraction orders.

that the diffraction grating is made up of L binary layers and the permittivity 
and permeability in each layer are independent of the variable z.

The method of solving the problem of diffraction in the three- 
dimensional case is similar to the two-dimensional case considered 
previously. The main details of the three-dimensional problem are 
given below.

Upon the plane wave diffraction on a three-dimensional diffraction 
grating, a set of reflected and transmitted diffraction orders is formed. 
In this case the field above and below the structure is as follows:
	
ΦΦ ΦΦ ΦΦU inc

U( , , ) = ( , , ) ( , ,x y z x y z R i k x k y k
n m

n m
R

n m x n y m z+ ( ) + +∑∑ , , ,exp ,, )n mz, ,( )
	 

		  (1.112)

	
ΦΦ ΦΦD

n m
n m
T

n m x n y m z n m Lx y z T i k x k y k z z( , , ) = , , ,∑∑ ( ) + − −( )( )(, , , ,exp D )),
	  

		  (1.113)
where Φinc (x,y,z) is the incident wave. The incident wave is assumed 
to be given in the form (1.19). The propagation constants of the 
diffraction orders with numbers (n,m) are described as follows:
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(1.114)

where as p, ‘U’ is taken for the reflected orders (the fields above 
the grating) and ‘D’ – for the transmitted ones (the field below the 
grating). The form of the propagation constants ensures that the two-
dimensional quasi-periodicity condition is fulfilled:

	 ΦΦ ΦΦp
x y

p
x x y yx d y d z x y z ik d ik d p( , , ) = ( , , ) .,0 ,0+ + +( ) =exp , ,U D 	  

		  (1.115)

According to (1.115), the amplitude of the field does not change 
upon a shift along the x and y axes by integer multiples of the 
corresponding periods. The waves with the real kz,p,n,m are propagating, 
those with the imaginary value are evanescent.

The electromagnetic field in each layer, as in the two-dimensional 
case, is described by the basic Maxwell’s equations for the 
monochromatic field in the form (1.24)–(1.27). We represent the 
components of the electric and magnetic fields in the form of a two-
dimensional Fourier series in the variables x, y:
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(1.116)

The equations (1.116) are written with the quasi-periodicity of 
the field components in the variables x, y taken into account. We 
restrict ourselves to a finite number of terms in the expansions 
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(1.116), corresponding to − ≤ ≤ − ≤ ≤N n N N m Nx x y y, . Substituting 
the expansion (1.116) into (1.26) and equating the coefficients of the 
same Fourier harmonics, we obtain a system of differential equations 
in the form
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(1.117)

The form of the resulting system is the same as that of the 
system (1.31) for the two-dimensional case. The difference is in the 
details of the representation of vectors and matrices in the system. 
The vectors Sx, Sy, Sz, Ux, Uy, Uz in (1.117) are a row-wise one-
dimensional representation of the matrices Sx,j,k, Sy,j,k, Sz,j,k, Ux,j,k, Uy,j,k, 
Uz,j,k, − ≤ ≤N j Nx x , –Ny < k < Ny. This means that the element of the 
vector Sx with the number

	
l i j i N jy( , ) .= +( ) +2 1

	 (1.118)

corresponds to the value Sx,i,j. The vectors introduced in this manner 
have the dimension (2Nx +1)(2Ny +1) equal to the total number of the 
calculated diffraction orders. For example, the vector Sx has the form

	
Sx x N N x N N x N N x N N x NS S S S S

x y x y x y x y x
= − − − − − − − −, , , , , , , , , ,, , , , ,1 1 1 11−
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N x N N

T

y x y
S, , , ,

	 
		  (1.119)

The matrices Kx, Ky, E i,j, M i,j in (1.117) have the dimensions           
(2Nx +1)(2Ny +1)×(2Nx +1)(2Ny +1). The matrices Kx and Ky are defined 
by the following expressions:
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where − ≤ ≤ − ≤ ≤N i n N N j m Nx x y y, , , .
Consider the preliminary form of the matrices Ei,j, Mi,j obtained 

by using the direct Laurent rules for the expansion of the product of 
the function into a Fourier series. The matrices Ei,j, Mi,j consist of 
the Fourier coefficients of the permittivity and permeability tensors, 
the structure of the matrices is ​​the same and has the form

	 T el i j l n m i n j m( , ), ( , ) ,= - - , 	
(1.121)

where ei,j are the Fourier coefficients − ≤ ≤ − ≤ ≤N i n N N j m Nx x y y, , , .
Since the form of the systems of differential equations in the two-

dimensional and three-dimensional cases is identical, all subsequent 
changes are also identical. The system of differential equations for 
the vectors Sx, Sy, Ux, Uy, in (1.117) also has the form (1.35)–(1.34). 
In particular, for a grating of an isotropic material ε  = ε(x,y) and 
μ  =  1 are the scalars, and the matrix of the differential equation 
system (1.35) has the form
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(1.122)

where the matrix E has the form (1.120) and is composed of the 
Fourier coefficients of functions ε(x,y). The formula (1.122) is 
obtained from the general expressions (1.36) and (1.34) with
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(1.123)

Consider the transition to the spatial–frequency representation 
(1.117) using the correct rules of the Fourier expansion of the 
product of the functions. Derivation of the formulas is presented for 
the case of an isotropic material. In this case the system of Maxwell’s 
equations (1.26) contains only the following three products: εEz, 
εEx, εEy.
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The tangential component Ez is continuous, so the product εEz  
is expanded  into a Fourier series using the Laurent rules (1.40). In 
this case, the corresponding matrix E3,3 (1.117) has the form (1.121).

We assume that the boundary between media with different 
dielectric constants in each layer is parallel to the axes [6]. Consider 
the product Dx = εEx. The product Dx is continuous at the sections of 
the boundaries between two media, parallel to the axis Oy. Indeed, 
in these areas Dx  = εEx  is a normal component of the electric 
displacement. The component Ex and the function of the dielectric 
constant ε are discontinuous at these borders. Thus, the product Dx = 
εEx  is continuous with respect to x for any fixed y.

Accordingly, for the expansion of Dx = εEx into the Fourier series 
in the variable x we use the inverse Laurent rule (1.41):

	
d y z y S y zx i x i n x n

n
, , ,, , ,( ) = ( ) ( )∑ε

	
(1.124)

where d y z S y zx i x n, ,, , ,( ) ( )  are the Fourier coefficients of the 
functions Dx  = εEx, and εx i,n (y) are the elements of the Toeplitz 
matrix 1 1ε x� �− formed from the Fourier coefficients with respect to 
the variable x of the function 1 ε x y,( ) . In the sections of the border 
between the media parallel to the axis Ox, component Ex is tangential 
and therefore continuous in the variable y. The Fourier coefficients 
Sx,n(y,z) of the function Ex will also be continuous. Therefore, the 
expansion in (1.124) of the terms εx i,n(y) Sx,n(y,z) into the Fourier 
series in the variable  is performed using the Laurent rule (1.40):

	
d z S zx i j x i n j m x n m

n m
, , , , , ,

,
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(1.125)

where ε x i n j m, , −  is the Fourier coefficient with the number (j–m) of 
the function εx  i,n(y).

Repeating similar reasoning for Dy = εEy, we obtain 

	
d x z x S x zy j y j m y m

m
, , ,, , ,( ) = ( ) ( )∑ε

	
(1.126)

	
d z S zy i j y i n j m y n m

n m
, , , , , ,

,
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(1.127)

where ε y j m x, ( )  are the elements of the Toeplitz matrix 1
1

ε y
��� ���

−
 

formed from the Fourier coefficients in the variable y of the functions 
1 ε x y, ,( ) and εy i–n, j,m is the Fourier coefficient with the number (i–n) 
of the function εy j,m.
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The equations (1.125) and (1.127) were obtained with the use 
of correct rules of expansion into a Fourier series of the products
D E D Ex x y y= =ε ε, . Accordingly, in transition from the system (1.26) 
to the spatial–frequency representation (1.117), the matrices E1,1, E2,2 
will have the form
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(1.128)

where l(i,j) is defined in (1.118), − ≤ ≤ − ≤ ≤N i n N N j m Nx x y y, , , . 
The matrices (1.128) have the dimensions (2Nx + 1)(2Ny + 1)×(2Nx 
+ 1)(2Ny + 1).

As a result, the matrix A of the system of of the linear differential 
equations takes the form:
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      		                                                          (1.129)

A detailed description of the correct rules of expansion into the 
Fourier series for the general case of the tensors of permittivity and 
permeability can be found in [8, 9].

Subsequent operations of the ‘stitching’ of the solutions at the 
layer boundaries and the numerically stable implementation of 
calculation of the matrix of the system of linear equations for the 
amplitudes of the diffraction orders are also the same. The matrices 
E,F in the systems of linear equations, representing the tangential 
field components (1.112), (1.113) at the upper and lower boundaries 
of the grating, also have the form of (1.74), where
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Here 
l i j

f i j
( , )

,diag ( )  denotes a diagonal matrix composed of elements  

f (i,j) arranged in the ascending order of the magnitude of l (i,j).
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1.1.4. The Fourier modal method for two-dimensional  
non-periodic structures

1.1.4.1. The geometry of the structure and formulation of the 
problem
The Fourier modal method can be adapted to simulate the diffraction 
of the waveguide and plasmonic modes at inhomogeneities of the 
waveguide. Consider the method for the case when the geometry 
of the considered structure is independent of the coordinate y. In 
addition, we assume that, as before, the structure can be divided 
into regions and in each region z z zl l< < 1-  the material parameters 
depend only on the coordinate x (Fig. 1.5). To apply the Fourier 
modal method we introduce the artificial periodization along the 
coordinate x, while for the elimination of the interaction between 
adjacent periods (i.e., to ensure vanishing of the electromagnetic 
field on the borders of the period) special absorbing layers are added 
to the boundaries of the period. These layers can be represented by 
multi-layered gradient absorbers or perfectly matched absorbing 
layers (PML) can be used [21, 22]. The gradient absorbing layers 
are layers in which the real part of the permittivity equals the 
permittivity of the adjacent medium, while the imaginary part, which 
characterizes absorption, increases while approaching the boundary 
of the period. A disadvantage of the gradient absorbing layers is 
non-zero reflection of incident radiation on them which increases 
substantially with increasing incidence angle. In some cases, this fact 
can substantially affect the solution of the problem with artificial 
periodization, decreasing the accuracy of the solution with respect 
to the solution of the original non-periodic problem. Reflections at 
the boundaries with absorbing layers are eliminated using perfectly 
matched absorbing layers described in the next section.

Fig. 1.5. The geometry of the problem of diffraction of surface plasmon polaritons 
in the aperiodic structure.

absorbing layer
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Unlike the standard version of the Fourier modal method, intended 
for the solution of the problem of diffraction on periodic structures, 
the result of the application of non-periodic modification will not be 
a set of intensities of diffraction orders but a set of the amplitudes 
of the reflected and transmitted modes.

1.1.4.2. Perfectly matched absorbing layers

Perfectly matched absorbing layers as anisotropic materials
Consider perfectly matched absorbing layers represented by a layer 
of anisotropic materials added to the boundaries of the period of the 
structure. The property of the perfectly matched absorbing layers 
to absorb incident radiation without back-reflection in this case is 
achieved by a special choice of the permittivity and permeability 
tensors.

To determine the type of tensor we consider initially an overview 
of the field of a plane electromagnetic waves in an anisotropic 
medium, described by the diagonal tensors of dielectric permittivity 
and magnetic permeability:
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Since the properties of the medium do not depend on the variable 
z, the electric and magnetic fields have the form
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Substituting (1.131) into (1.3), we obtain:
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where ∂ = ∂ ∂x f f x .  Using (1.133), we represent the tangential 
components by the components Ez, Hz in the form

.
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where Ez, Hz satisfy the equations
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For an uniaxial anisotropic medium of the type
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we obtain from (1.135) that Ez, Hz satisfy the Helmholtz equation
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Solving (1.137) by separation of variables, we obtain
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where
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Next, we consider the E- and H-type waves. For the E-wave 
E Hz z≠ =0 0,  , and for the H-wave H Ez z≠ =0 0, . From (1.134) 
(1.138) for the E-waves we get
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Since the solution of the diffraction problem requires the 
imposition of conditions of equality of the tangential components of 
the fields at the interface, it is convenient to introduce the following 
four-component vector of the tangential components:
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Vector (1.141) is written with a normalizing factor chosen from 

the condition that the unit z-component of the Poynting vector 
S E H E Hz x y y x= −  is unity.

.



44 Diffractive Optics and Nanophotonics

From (1.134) and (1.138) for the H-wave we get
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Similarly to (1.141), we introduce the vector of the tangential 
components of the H-wave in the form
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Fresnel equations . We write the Fresnel equations for the 
interface between a homogeneous dielectric and a medium described 
by the tensor (1.136). Without the loss of generality, we assume that 
the interface is the plane z  = 0. We also assume that in the region                  
z > 0 there is a homogeneous dielectric, and at z < 0 – the anisotropic 
medium (1.136).

Suppose that a plane wave impinges on the interface from the 
side of the homogeneous dielectric. The plane wave is represented 
as a superposition of the E- and H-waves. In a general case, upon 
the reflection and refraction of the incident wave at the interface 
reflected and refracted waves will be formed as a superposition of 
the E- and H-waves.

Assuming in (1.141) and (1.143) ε ε ε= =z 0, µ µ µ= =z 0 , we write 
the E- and H-waves incident and reflected from the interface

.
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where γ ε µ α β0 0 0 0
2

0
21= − − . ‘inc’ and ‘ref ’ in the subscripts of 

the waves in (1.144) and (1.145) denote the incident and reflected 
waves, respectively.

If z > 0 the field is a superposition of the incident and reflected 
waves

	 E x E x E x E x E xz E inc E H inc H E ref E H ref HI I R R> ( ) = ( ) + ( ) + ( ) + ( )0 , , , , 	  
		  (1.146)

where x = ( )x y z, , , IE,, IH are the coefficients of the E- and H-waves 
for the incident wave, and RE, RH  are the reflection coefficients. The 
transmitted field z < 0 has the form:

	 E x E x E xz E tr E H tr HT T< ( ) = ⋅ ( ) + ⋅ ( )0 , , 	 (1.147)

where TE, TH are the transmission coefficients,

,

,
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where γ εµ α β γ µ ε µ α β ε µ= − − = − +( )1 2 2
1

2 2, / /z z .

To determine the reflection and transmission coefficients, we 
write the condition of equality of the tangential components at z = 0 
(μ0 = 1):
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The refraction law should be satisfied in this case;

	            α ε α ε µ β ε β ε µ0 0 0 0= =z z, 	 (1.150)

In the particular case
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we obtain
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In this case, the equation (1.149) takes the form
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		  (1.153)

It is easy to see that the solution of (1.153) is as follows:

	 R R T I T IE H H H E E= = = =0, , . 	 (1.154)

According to (1.154), medium (1.151) does not reflect the incident 
waves. At complex a  = a' +ia" in (1.151) the transmitted waves 
(1.148) will be evansecent. The rate of decay is determined by the 
imaginary part a''. Thus, a layer of material (1.151) at complex a is 
a perfectly matched absorbing layer.

When β0 = 0 in (1.144) the direction vector of the incident wave 
lies in the plane xOz. In the case of ‘planar incidence’ the E-wave 
corresponds to a wave with TM-polarization and the H-wave to a 
wave with TE-polarization.

For the incident wave with TM-polarization the medium (1.151) 
takes the form
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Indeed, it is easy to show that under the condition (1.155), β0  = 
0  and IH = 0 the solution of (1.149) has the form

.
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	 R R T T IE H H E E= = = =0 0, , . 	 (1.156)

According to (1.156), the medium (1.155) does not reflect the 
incident waves.

Similarly, for the incident wave with TE-polarization the following 
condition is sufficient
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(1.157)

In the case of (1.157) the solution of (1.149) with β0  = 0 and 
IH = 0 has the form

	 R R T I TE H H H E= = = =0 0, , . 	 (1.158)

Perfectly matched absorbing layers as a complex coordinate 
transformation
We now introduce the perfectly matched absorbing layers as a 
complex coordinate transformation [23]. For simplicity, consider 
the case of diffraction of a TM-polarized wave (in particular, the 
plasmonic modes – the geometry of the structure is shown on the 
left in Fig. 1.6) on the structure composed of isotropic materials. 
In this case, the electric and magnetic fields have the form 
E H= ( ) = ( )E E Hx z y, , , , ,0 0 0 . In each of the layers of the structure at 
μ  = 1 we can obtain the Helmholtz equation for the component Hy 
from Maxwell’s equations (1.24):
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(1.159)

Equation (1.159) is written in a general form and is valid for 
both the initial non-periodic problem and, for example, for the 
problem of diffraction of the TM-polarized wave on a diffraction 
structure with one-dimensional periodicity. Note that in solving the 
diffraction problem by the Fourier modal method, equation (1.159), 
which describes the field in the layer of the structure, is reduced to 
a second system of differential equations in (1.48).

.
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Fig. 1.6.  The transition to a non-periodic task using perfectly matched absorbing 
layers in the form of coordinate transformations.

Suppose we are interested in the solution of the original aperiodic 
problem in the region x > e/2 in addition, the regions x > e/2 
are homogeneous (Fig. 1.6). Note that because of physical reasons 
(absence of incident waves apart from the incident waveguide 
or plasmonic mode) the regions x > e/2 contain only the waves 
propagating from the structure (in the direction of increase x > e/2).

As indicated above, to solve a non-periodic problem by the Fourier 
modal method it is necessary to introduce artificial periodization with 
a certain period d > e so as to eliminate the interaction between 
adjacent periods. To do this, it is necessary to ensure that the 
components of the electromagnetic field at the boundaries between 
periods are equal to zero. Consider the analytic continuation of the 
solution of equation (1.159) for the original problem in the variable 
x in the complex plane: x = x' +ix". Note that the propagating waves 
are evanescent in this case. Indeed, for waves propagating in the 
positive direction of the x axis (kx > 0), we get:

	 exp (ikxx) = exp (ikxx') exp (–kxx'')	 (1.160)

Thus, these waves become evanescent when x''→+∞. Similarly, 
the waves propagating in the negative direction of the axis x,                        
decay when x''→-∞. Thus, we consider the solution of (1.159) on 
the contour in the complex plane having the form shown in Fig. 1.7. 

A
bsorbing layers

.
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The horizontal dashed line shows the real axis, the vertical dotted 
lines – the area ′ ∈ − ( ) ( ) x d e d e d2 2, .

Fig. 1.7. The considered contour in the complex plane.

At ′∈ −( )x e e2 2,  the contour lies on the real axis, away from 
the real axis x''→+∞ and the imaginary part x' also tends to infinity, 
with the condition x'x'' > 0. This selection of the contour provides 
decay of the electromagnetic field with increasing distance from 
the real axis. To introduce artificial periodization, consider the 
transformation of coordinates F x x( ) =  mapping the contour on the 
complex plane into the interval x d d∈ −( )2 2, where x̃  is a new 
real coordinate. At the same time at x e e∈ −( )2 2,  the field will 
be the same as the solution of the original equation (1.159), while 
at x̃ →+d/2 the field components will tend to zero by the choice 
of the contour in the complex plane x. To move from equation 
(1.159) to a new differential equations depending on a variable x̃, 
we need to make the following change of the differential operator: 
∂ ∂ → ⋅∂ ∂x f x  where f x dx dx dF x dx   ( ) = = ( )( )−1 . As a result, we 
obtain the differential equation
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(1.161)

Equation (1.161) can be solved by the Fourier modal method 
since the task now allows artificial periodization (since the field 
at the boundaries of the period x̃ = +d/2 tends to zero). Using the 
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expansions (1.27), the solution of the differential equation (1.161), 
which describes a general representation of the field in the layer can 
be reduced to a system of differential equations
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(1.162)

where z' = k0z, Fx is the Toeplitz matrix formed from the coefficients 
of expansion of the function f into the Fourier series. Comparing 
the second system of differential equations (1.48) with (1.162), 
one can see that the latter is derived from the first formal change                   
Kx →FxKx. Note that in the general case, when the field in the 
layer is described by a system of differential equations (1.35) with 
the matrix (1.36), the perfectly matched absorbing layers can be 
introduced using the same formal change.

We now give as an example the type of function f(x̃) that describes 
the coordinate transformation [23]:
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where q  = d–e is the total size of the region corresponding to 
the absorbing layers, γ is a complex parameter characterizing the 
absorbing layer (typical value γ  = 1/(1–i)). For this function, the 
coefficients of the Fourier series can be found analytically and have 
the form
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where δn0 is the Kronecker symbol, sinc(x)  = sin(πx)/(πx). We note 
that the function f(x̃) corresponds to the contour in the complex plane
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The real and imaginary parts of the function  f(x̃) at e = d/3, γ = 
1/(1–i) are shown in Fig. 1.8, the contour in the complex plane is 
shown in Fig. 1.7.

Fig. 1.8. The real and imaginary parts of the contour in the complex plane, depending 
on the value of the new real variable.

1.1.4.3. Solution of the diffraction problem 
Stages of solving the difraction problem in this case coincide with 
the stages of solving the diffraction problem of a plane wave on a 
two-dimensional diffraction structure described in subsection 1.2. The 
differences lie in the form of the field above and below the structure 
(in regions 1 and 3 in Fig. 1.5). Since the regions above and below 
the structure in this case are not uniform, the electromagnetic field 
therein can not be represented in the form of Rayleigh expansions 
(1.20) and (1.21). Representation of the field in these areas can be 
obtained similarly to the representation of the field in the layer of 
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the structure obtained by solving a system of differential equations 
of the form (1.35) (with the possible modification of the matrix of 
the system by introducing perfectly matched layers in the form of 
coordinate transformations). Thus, the field above and below the 
structure will be presented in the form of the Fourier series (1.27) 
and the expressions for the x- and y-Fourier components of the fields 
will be similar to (1.58):
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Similarly to the expressions (1.20), (1.21), the indices U and 
D correspond to the regions above and below the structure (reas 1 
and 3 in Fig. 1.5). The first term in (1.166) describes the incident 
wave with an amplitude Ainc, with its eigenvalue λinc selected from 
ΛU

(+) as closest one to the propagation constant of the incident mode 
calculated by solving the corresponding dispersion equation.

The system of  l inear  equat ions  (1 .71) ,  which descr ibes 
the condition of equality of the tangential components of the 
electromagnetic field at the boundaries of layers of the structure, 
retains its form, however, the expressions for D, P (U) and P (D), 
included in the equation, change. In this case,
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(1.168)

As before, for obtaining a numerically-stable solution of equations 
(1.71) and finding the amplitudes of the transmitted and reflected 
waves we can use the scattering matrix algorithm, described in 
section 1.2.6. For the calculation of the distribution of the field we 
can use a stable procedure described in subsection 1.2.7.
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1.1.4.4 The energy characteristics of the reflected and 
transmitted light
First we find the energy characteristics of the transmitted radiation. 
To do this,  we calculate the flux of the z-component of the 
Umov–Poynting vector Sz = Re(ExH

*
y – EyH

*
x)/2 of the transmitted 

waves within a period through the segment z  = zL. We rewrite the 
representation of the field (1.167) for z  = zL, separating parts of 
the eigenvectors WD

(+) corresponding to the various components of 
the electromagnetic field:
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Taking into account (1.169) in (1.27) and assuming for the sake 
of simplicity that y = 0, we obtain:
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(1.170)

where ti are the elements of the vector T, w w wj i S j i S j i Ux y x, , , , , ,, , ,  and 
wj i Uy, , are the elements of  vectors W W W WS S U UD D D Dx y x y,

( )
,

( )
,

( )
,

( ), , ,+ + + +and
respectively. Taking into account (1.170) in the expression for the 
z-component of the Umov–Poynting vector, we get:
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Given the equality Re exp Re, ,a i k k x dx a dx j x n

d

jn−( ) ( ) = ( )∫0 δ from 
(1.171) we obtain:
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From (1.172) it follows that, in contrast to the above-mentioned 
periodic structures, the flux of the Umov–Poynting vector in the 
period can not be represented as a sum of terms, each of which 
corresponds to a single wave. Note, however, that the waveguide 
and plasmonic modes, propagating in the original structure, the 
following condition of orthogonality is numerically satisfied (up to 
the order of 10–10):
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where k is a fixed number, and m runs through all values ​​from 1 
to the number of waves corresponding to the dimensionality of the 
system of differential equations (1.35). Verification of fulfillment 
of this condition allows us to judge the correctness of the choice 
of the values ​of the period ​d for artificial periodization and the 
parameters of absorbing layers. But the waves, for which the 
orthogonality condition (1.173) is fulfilled, can be given the energy 
characteristics similar to the intensity of the diffraction orders and 
determined by expression
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where w w w wj inc S j inc S j inc U j inc Ux y x y, , , , , , , ,, , , and are the elements  of  the 
vector W inc. The denominator of (1.174) gives the flux of the 
Umov–Poynting vector of the incident wave. Similarly, the energy 
characteristics of the reflected waves are calculated: the elements 
of the vector T (1.174) are replaced by the elements of the vector 
R, and the elements of the eigenvectors from the matrix WD

(+) are 
replaced by the corresponding values ​​from the matrix WD

(–).

1.1.4.5. Numerical example
Consider as an example the propagation of a TM-polarized 
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fundamental mode of the plane-parallel waveguide through a couple 
of grooves in it (Fig. 1.9) [21]. The refractive indices of the materials 
are shown in the Fig., the waveguide thickness is 300 nm, the 
width of the grooves and the step separating them are 150 nm. The 
wavelength of the radiation in free space is 975 nm.

Fig. 1.9. The geometry of the diffraction problem.

Table 1.1 shows the values ​​of the coefficients of reflection and 
transmission (energy characteristics of the reflected and transmitted 
modes) depending on the number of harmonics N (the total number 
of harmonics is 2N +1). Simulation was carried out using perfectly 
matched absorbing layers in the form of coordinate transformations. 
The following simulation parameters were: e = 900 nm, d = 3e, γ = 
1/(1–i), the middle of the waveguide coincided with the middle of 
the period.

N IR IT

50 0.356216 0.129970
100 0.355637 0.129675
150 0.355569 0.129619
200 0.355531 0.129604

1.2. Methods for calculating eigenmodes of periodic 
diffractive structures

1.2.1. Calculation of modes based on the calculation of the 
poles of the scattering matrix

The diffractive micro- and nanostructures with the resonant properties 
are of great interest for designing of modern elements of integrated 
optics and photonics [19,24–31]. The resonant properties are 
manifested in the abrupt change in the transmission and reflection 
spectra, and are usually associated with the excitation of the 

Table 1.1. Coefficients of reflection and transmission for the TM-polarized fundamental 
mode


